Dynamic Embeddings for Language Evolution

نویسندگان

  • Maja Rudolph
  • David Blei
چکیده

Word embeddings are a powerful approach for unsupervised analysis of language. Recently, Rudolph et al. [35] developed exponential family embeddings, which cast word embeddings in a probabilistic framework. Here, we develop dynamic embeddings, building on exponential family embeddings to capture how the meanings of words change over time. We use dynamic embeddings to analyze three large collections of historical texts: the U.S. Senate speeches from 1858 to 2009, the history of computer science ACM abstracts from 1951 to 2014, and machine learning papers on the ArXiv from 2007 to 2015. We find dynamic embeddings provide better fits than classical embeddings and capture interesting patterns about how language changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Bernoulli Embeddings for Language Evolution

Word embeddings are a powerful approach for unsupervised analysis of language. Recently, Rudolph et al. (2016) developed exponential family embeddings, which cast word embeddings in a probabilistic framework. Here, we develop dynamic embeddings, building on exponential family embeddings to capture how the meanings of words change over time. We use dynamic embeddings to analyze three large colle...

متن کامل

Dynamic Categorization of Semantics of Fashion Language: A Memetic Approach

Categories are not invariant. This paper attempts to explore the dynamic nature of semantic category, in particular, that of fashion language, based on the cognitive theory of Dawkins’ memetics, a new theory of cultural evolution. Semantic attributes of linguistic memes decrease or proliferate in replication and spreading, which involves a dynamic development of semantic category. More specific...

متن کامل

Context-Dependent Sense Embedding

Word embedding has been widely studied and proven helpful in solving many natural language processing tasks. However, the ambiguity of natural language is always a problem on learning high quality word embeddings. A possible solution is sense embedding which trains embedding for each sense of words instead of each word. Some recent work on sense embedding uses context clustering methods to dete...

متن کامل

Non-Concurrent Error Detection and Correction in Fault-Tolerant Discrete-Time LTI Dynamic Systems

This paper develops resource-efficient alternatives to modular redundancy for fault-tolerant discrete-time (DT) linear time-invariant (LTI) dynamic systems. The proposed method extends previous approaches that are based on embedding the state of a given DT LTI dynamic system into the redundant state-space of a DT LTI dynamic system of higher state dimension. These embeddings, as well as the emb...

متن کامل

Sub-Word Similarity based Search for Embeddings: Inducing Rare-Word Embeddings for Word Similarity Tasks and Language Modelling

Training good word embeddings requires large amounts of data. Out-of-vocabulary words will still be encountered at test-time, leaving these words without embeddings. To overcome this lack of embeddings for rare words, existing methods leverage morphological features to generate embeddings. While the existing methods use computationally-intensive rule-based (Soricut and Och, 2015) or tool-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018