Collagen type II is downregulated in the degenerative nucleus pulposus and contributes to the degeneration and apoptosis of human nucleus pulposus cells
نویسندگان
چکیده
Degenerative disc disease (DDD) is a common degenerative condition initiated mainly within the nucleus pulposus (NP). To date, the etiopathogenesis of DDD remains unclear, and because no effective therapeutic strategies are available to target its pathological processes, DDD is still treated with symptomatic interventions that are far from adequate. Collagen type II is one of the major matrix components of the NP, and is considered to be essential to NP homeostasis. However, the specific mechanisms by which collagen type II influences NP cells remain unknown. In the present study, collagen type II expression was detected using immunohistochemistry analysis and quantitative polymerase chain reaction, and it was demonstrated to be significantly downregulated in NP tissues from patients with DDD compared with nondegenerative controls. To further explore the mechanism in vitro, interleukin (IL)‑1β stimulation was used to induce degeneration of a human NP cell line. IL‑1β stimulation upregulated both the mRNA and protein levels of the catabolic markers matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), while it downregulated the anabolic makers aggrecan and collagen type II. However, addition of purified collagen type II prevented this IL‑1β‑induced metabolic disturbance of the NP cells. Furthermore, IL‑1β stimulation significantly promoted apoptosis in NP cells, while collagen type II treatment decreased the apoptotic rate and the protein levels of cleaved caspase‑3. In conclusion, collagen type II exhibited protective effects in suppressing NP cell degeneration through its anticatabolic, proanabolic and antiapoptotic effects, suggesting that it may be a promising therapeutic agent for the prevention and treatment of DDD.
منابع مشابه
Influence of simvastatin on the biological behavior of nucleus pulposus-derived mesenchymal stem cells
Objective(s): This research is to study the influences of different concentrations of simvastatin on the biological activities of nucleus pulposus-derived mesenchymal stem cells (NPMSC).Materials and Methods: NPMSC were cultured with different concentrations of simvastatin (0, 0.01, 0.1, and 1 μM) and assessed to determine the possible e...
متن کاملDownregulation of microRNA-125a is involved in intervertebral disc degeneration by targeting pro-apoptotic Bcl-2 antagonist killer 1
Objective(s): To investigate the role of the microRNA-125a (miR-125a) and BAK1 in intervertebral disc degeneration (IDD). Materials and Methods: Degenerative lumbar nucleus pulposus (NP) tissues were obtained from 193 patients who underwent resection, and normal controls consisted of normal NP tissues from 32 patients with traumatic lumbar fracture in our hospital. All patients were graded acco...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملAdeno-associated virus-mediated BMP-7 and SOX9 in vitro co-transfection of human degenerative intervertebral disc cells.
Bone morphogenetic protein-7 (BMP-7) and SOX9 are important transcription factors in chondrogenesis. In this study, we examined the biological function of the adeno-associated virus (AAV)-mediated BMP-7 and SOX9 double gene in vitro co-transfection of nucleus pulposus cells of human degenerative intervertebral disc. Human intervertebral disc nucleus pulposus cells were cultured in vitro and sub...
متن کاملDegenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy
Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...
متن کامل