Maximal Integral Point Sets over Z2 Andrey Radoslavov Antonov and Sascha Kurz

نویسنده

  • ANDREY RADOSLAVOV ANTONOV
چکیده

Geometrical objects with integral side lengths have fascinated mathematicians through the ages. We call a setP = {p1, . . . , pn} ⊂ Z2 a maximal integral point set over Z2 if all pairwise distances are integral and every additional point pn+1 destroys this property. Here we consider such sets for a given cardinality and with minimum possible diameter. We determine some exact values via exhaustive search and give several constructions for arbitrary cardinalities. Since we cannot guarantee the maximality in these cases we describe an algorithm to prove or disprove the maximality of a given integral point set. We additionally consider restrictions as no three points on a line and no four points on a circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal integral point sets over 2

Geometrical objects with integral side lengths have fascinated mathematicians through the ages. We call a set P = {p1, . . . , pn} ⊂ Z2 a maximal integral point set over Z2 if all pairwise distances are integral and every additional point pn+1 destroys this property. Here we consider such sets for a given cardinality and with minimum possible diameter. We determine some exact values via exhaust...

متن کامل

Maximal integral point sets in affine planes over finite fields

Motivated by integral point sets in the Euclidean plane, we consider integral point sets in affine planes over finite fields. An integral point set is a set of points in the affine plane F2q over a finite field Fq, where the formally defined squared Euclidean distance of every pair of points is a square in Fq. It turns out that integral point sets over Fq can also be characterized as affine poi...

متن کامل

Integral point sets over finite fields

We consider point sets in the affine plane Fq where each Euclidean distance of two points is an element of Fq . These sets are called integral point sets and were originally defined in m-dimensional Euclidean spaces Em. We determine their maximal cardinality I(Fq , 2). For arbitrary commutative rings R instead of Fq or for further restrictions as no three points on a line or no four points on a...

متن کامل

Integral point sets over Zn

There are many papers studying properties of point sets in the Euclidean space Em or on integer grids Zm, with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of Z/Zn, and study the properties of the resulting combinatorial structures.

متن کامل

Integral point sets over Z mn

There are many papers studying the properties of point sets in the Euclidean space Em or on integer grids Zm , with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of Z/Zn, and study the properties of the resulting combinatorial structures. c © 2007 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008