Weil-Petersson geometry of Teichmüller–Coxeter complex and its finite rank property

نویسنده

  • Sumio Yamada
چکیده

Resolving the incompleteness of Weil-Petersson metric on Teichmüller spaces by taking metric and geodesic completion results in two distinct spaces, where the Hopf-Rinow theorem is no longer relevant due to the singular behavior of the Weil-Petersson metric. We construct a geodesic completion of the Teichmüller space through the formalism of Coxeter complex with the Teichmüller space as its non-linear nonhomogeneous fundamental domain. We then show that the metric and geodesic completions both satisfy a finite rank property, demonstrating a similarity with the non-compact symmetric spaces of semi-simple

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Asymptotic Weil-Petersson Geometry of Teichmüller Space of Riemann Surfaces

We investigate the asymptotic behavior of curvatures of the Weil-Petersson metric in Teichmüller space. We use a pointwise curvature estimate to study directions, in the tangent space, of extremely negative curvature and directions of asymptotically zero curvatures.

متن کامل

Weil-petersson Metric on the Universal Teichmüller Space I: Curvature Properties and Chern Forms

We prove that the universal Teichmüller space T (1) carries a new structure of a complex Hilbert manifold. We show that the connected component of the identity of T (1), the Hilbert submanifold T0(1), is a topological group. We define a Weil-Petersson metric on T (1) by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that T (1) is a Kähler -Einstei...

متن کامل

Curvature and rank of Teichmüller space

Let S be a surface with genus g and n boundary components and let d(S) = 3g − 3 + n denote the number of curves in any pants decomposition of S. We employ metric properties of the graph of pants decompositions CP(S) prove that the Weil-Petersson metric on Teichmüller space Teich(S) is Gromov-hyperbolic if and only if d(S) ≤ 2. When d(S) ≥ 3 the Weil-Petersson metric has higher rank in the sense...

متن کامل

Average Curvatures of Weil-Petersson Geodesics In Teichmüller Space

Every point in Teichmüller space is a hyperbolic metric on a given Riemann surface, therefore, a Weil-Petersson geodesic in Teichmüller space can be viewed as a 3-manifold. We investigate the sectional curvatures of this 3-manifold, with a natural metric. We obtain explicit formulas for the curvature tensors of this metric, and show that the “average”s of them are zero, and hence the geometry o...

متن کامل

On Harmonic Mappings into Weil-Peterssson Completed Teichmüller Spaces

Harmonic mappings into Teichmüller spaces appear in the study of manifolds which are fibrations whose fibers are Riemann surfaces. In this article we will study the existence and uniquenesses questions of harmonic mappings into Teichmüller spaces, as well as some local and global behavior of the harmonic images induced by the Weil-Petersson geometry of Teichmüller spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008