Highly sensitive methane catalytic combustion micro-sensor based on mesoporous structure and nano-catalyst.
نویسندگان
چکیده
In order to get a methane catalytic combustion micro-sensor, two different catalytic systems used in traditional methane catalytic combustion sensors were fabricated into a mesoporous structure and their catalytic activities were investigated. In comparison, the Rh2O3-Al2O3 system can form more a uniform mesoporous structure and has a much higher specific surface area. Even more importantly, it has relatively higher catalytic activity and stability for the methane catalytic combustion reaction. After being coated on a microelectro-mechanical system (MEMS) micro-heater, a catalytic combustion type methane micro-sensor was fabricated. The meso-structured Rh2O3-Al2O3 hybrid based MEMS sensor demonstrated a short T90 response time, relatively high signal output, high enough signal/noise ratio for practical detecting and strong anti-poison properties.
منابع مشابه
An Investigation into the Effect of Hydrotalcite Calcination Temperature on the Catalytic Performance of Mesoporous Ni-MgO-Al2O3 Catalyst in the Combined Steam and Dry Reforming of Methane
Several mesoporous nickel-based catalysts with MgO-Al2O3 as the catalyst support were prepared using a co-precipitation method at a constant pH. The supports were prepared from the decomposition of an Mg-Al hydrotalcite-like structure which had already been prepared with Mg/Al=1. Prior to impregnating 10 wt.% nickel on the supports, the precursor was decomposed at several ...
متن کاملPseudomorphic Reaction: A New Approach to Produce Bulk Mesoporous Silica as Catalyst Support in Methane Reforming
Pseudomorphism is known as a suitable technique for producing mesoscale pore in silica powders keeping their original morphologies. Herein, silica discs with several millimeter dimensions have been prepared using the same method. This method has been utilized through application of pseudomorphism reaction of preshaped bodies by immersion in a solution containing surfactant and swelling re...
متن کاملMethane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method
An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...
متن کاملDesign and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors
The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS) technology. The temperature field of the sensor i...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2013