Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks
نویسندگان
چکیده
While deeper and wider neural networks are actively pushing the performance limits of various computer vision and machine learning tasks, they often require large sets of labeled data for effective training and suffer from extremely high computational complexity. In this paper, we will develop a new framework for training deep neural networks on datasets with limited labeled samples using cross-network knowledge projection which is able to improve the network performance while reducing the overall computational complexity significantly. Specifically, a large pre-trained teacher network is used to observe samples from the training data. A projection matrix is learned to project this teacher-level knowledge and its visual representations from an intermediate layer of the teacher network to an intermediate layer of a thinner and faster student network to guide and regulate its training process. Both the intermediate layers from the teacher network and the injection layers from the student network are adaptively selected during training by evaluating a joint loss function in an iterative manner. This knowledge projection framework allows us to use crucial knowledge learned by large networks to guide the training of thinner student networks, avoiding over-fitting, achieving better network performance, and significantly reducing the complexity. Extensive experimental results on benchmark datasets have demonstrated that our proposed knowledge projection approach outperforms existing methods, improving accuracy by up to 4% while reducing network complexity by 4 to 10 times, which is very attractive for practical applications of deep neural networks.
منابع مشابه
Knowledge Projection for Deep Neural Networks
While deeper and wider neural networks are actively pushing the performance limits of various computer vision and machine learning tasks, they often require large sets of labeled data for effective training and suffer from extremely high computational complexity. In this paper, we will develop a new framework for training deep neural networks on datasets with limited labeled samples using cross...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کاملDesigning an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کامل