Boundedness of solutions for sublinear reversible systems
نویسنده
چکیده
In this paper we will study the boundedness of all solutions for second-order differential equations ẍ+ f(x)ẋ+ λx+ g(x) = p(t), where λ ∈ R and g(x) satisfies the sublinear growth condition. Since the system in general is non-Hamiltonian, we have to introduce reversibility assumptions to apply the twist theorem for reversible mappings. Under some suitable conditions we then obtain the existence of invariant tori and thus the boundedness of all solutions.
منابع مشابه
Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization
This paper presents a new method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the scalar optimization problem constructed by using these functions, enables to compute complete set of weakly efficient, efficient, and properly efficient solutions of multi-objective optim...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملAdams-spanne Type Estimates for Certain Sublinear Operators and Their Commutators Generated by Fractional Integrals in Generalized Morrey Spaces on Heisenberg Groups and Some Applications
In this paper we consider the Spanne type boundedness of sublinear operators and prove the Adams type boundedness theorems for these operators and also give BMO (bounded mean oscillation space) estimates for their commutators in generalized Morrey spaces on Heisenberg groups. The boundedness conditions are formulated in terms of Zygmund type integral inequalities. Based on the properties of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 158 شماره
صفحات -
تاریخ انتشار 2004