Diffusive Shock Acceleration in Oblique MHD Shocks: Comparison with Monte Carlo Methods and Observations
نویسندگان
چکیده
We report simulations of diffusive particle acceleration in oblique magnetohydrodynamical (MHD) shocks. These calculations are based on extension to oblique shocks of a numerical model for “thermal leakage” injection of particles at low energy into the cosmic-ray population. That technique, incorporated into a fully dynamical diffusionconvection formalism, was recently introduced for parallel shocks by Kang & Jones (1995). Here, we have compared results of time dependent numerical simulations using our technique with Monte Carlo simulations by Ellison, Baring & Jones 1995 and with in situ observations from the Ulysses spacecraft of oblique interplanetary shocks discussed by Baring et al., (1995). Through the success of these comparisons we have demonstrated that our diffusion-convection method and injection techniques provide a practical tool to capture essential physics of the injection process and particle acceleration at oblique MHD shocks. In addition to the diffusion-convection simulations, we have included time dependent two-fluid simulations for a couple of the shocks to demonstrate the basic validity of that formalism in the oblique shock context. Using simple models for the two-fluid closure parameters based on test-particle considerations, we find good agreement with the dynamical properties of the more detailed diffusion-convection results. We emphasize, however, that such two-fluid results can be sensitive to the properties of these closure parameters when the flows are not truly steady. Furthermore, we emphasize through example how the validity of the two-fluid formalism does not necessarily mean that steady-state two-fluid models provide a reliable tool for predicting the efficiency of particle acceleration in real shocks. Subject headings: Cosmic-Rays— particle acceleration— magnetohydrodynamics
منابع مشابه
Diffusive Shock Acceleration in Unmodified Relativistic, Oblique Shocks
We present results from a fully relativistic Monte Carlo simulation of diffusive shock acceleration (DSA) in unmodified shocks. The computer code uses a single algorithmic sequence to smoothly span the range from nonrelativistic speeds to fully relativistic shocks of arbitrary obliquity, providing a powerful consistency check. While known results are obtained for nonrelativistic and ultra-relat...
متن کاملDiffusive Acceleration of Ions at Interplanetary Shocks
Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth’s bow shock and the solar wind termination shock, where the accelera...
متن کاملGamma-Ray Burst Prompt Emission: Implications from Shock Acceleration Theory
The principal paradigm for gamma-ray bursts suggest that the prompt transient gamma-ray signal arises from multiple shocks internal to the relativistic expansion. This paper illustrates some properties of diffusive acceleration at relativistic shocks that pertain to GRB models, providing interpretation of the BATSE/EGRET data. Using a standard Monte Carlo simulation, computations of the spectra...
متن کاملNon-linear Particle Acceleration in Oblique Shocks
The solution of the non-linear diffusive shock acceleration problem, where the pressure of the non-thermal population is sufficient to modify the shock hydrodynamics, is widely recognized as a key to understanding particle acceleration in a variety of astrophysical environments. We have developed a Monte Carlo technique for self-consistently calculating the hydrodynamic structure of oblique, st...
متن کاملParticle Acceleration at Interplanetary Shocks
The acceleration of interstellar pick-up ions as well as solar wind species has been observed at a multitude of interplanetary (IP) shocks by different spacecraft. The efficiency of injection of the pick-up ion component differs from that of the solar wind, and is strongly enhanced at highly oblique and quasi-perpendicular shock events. This paper expands upon previous work modeling the phase s...
متن کامل