Stable Association of Mitotic Cyclin B/Cdc2 to Replication Origins Prevents Endoreduplication
نویسندگان
چکیده
We show that in fission yeast the mitotic B type cyclin Cdc13/Cdc2 kinase associates with replication origins in vivo. This association is dependent on the origin recognition complex (ORC), is established as chromosomes are replicated, and is maintained during G2 and early mitosis. Cells expressing an orp2 (ORC2) allele that reduces binding of Cdc13 to replication origins are acutely prone to chromosomal reduplication. In synchronized endoreduplicating cells, following Cdc13 ablation, replication origins are coordinately licensed prior to each successive round of S phase with the same periodicity as in a normal cell cycle. Thus, ORC bound mitotic Cyclin B/Cdc2 kinase imposes the dependency of S phase on an intervening mitosis but not the temporal licensing of replication origins between each S phase.
منابع مشابه
Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis.
Feedback mechanisms preventing M phase occurrence before S phase completion are assumed to depend on inhibition of cyclin B-cdc2 kinase activation by unreplicated DNA. In sea urchin, fertilization stimulates protein synthesis and releases eggs from G1 arrest. We found that in the one-cell sea urchin embryo cyclin B-cdc2 kinase undergoes partial activation before S phase, reaching in S phase a l...
متن کاملContinuous Cyclin E expression inhibits progression through endoreduplication cycles in Drosophila
Entry into S phase of the mitotic cell cycle is normally strictly dependent on progression through the preceding M phase. In contrast, during endoreduplication, which accompanies post-mitotic cell growth in many organisms, repeated S phases occur without intervening M phases. Upon transition from mitotic to endoreduplication cycles in Drosophila embryos, expression of the mitotic cyclins A, B a...
متن کاملFlavopiridol, a cyclin-dependent kinase inhibitor, prevents spindle inhibitor-induced endoreduplication in human cancer cells.
Defects in cell cycle checkpoints can lead to chromosome abnormality, aneuploidy, and genomic instability, all of which can contribute to tumorigenesis. Recent studies and data presented in this study indicate that cells with compromised G1 checkpoint endoreduplicate and become polyploid in response to microtubule inhibitors. Previous studies have shown that polyploid cells are unstable and los...
متن کاملDrosophila fizzy-related Down-Regulates Mitotic Cyclins and Is Required for Cell Proliferation Arrest and Entry into Endocycles
We demonstrate that fizzy-related (fzr), a conserved eukaryotic gene, negatively regulates the levels of cyclins A, B, and B3. These mitotic cyclins that bind and activate cdk1(cdc2) are rapidly degraded during exit from M and during G1. While Drosophila fizzy has previously been shown to be required for cyclin destruction during M phase, fzr is required for cyclin removal during G1 when the em...
متن کاملA WD repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complexes.
In the fission yeast Schizosaccharomyces pombe, p34(cdc2) plays a central role controlling the cell cycle. We recently isolated a new gene named srw1(+), capable of encoding a WD repeat protein, as a multicopy suppressor of hyperactivated p34(cdc2). Cells lacking srw1(+) are sterile and defective in cell cycle controls. When starved for nitrogen source, they fail to effectively arrest in G1 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 111 شماره
صفحات -
تاریخ انتشار 2002