The maximum size of 3-wise t-intersecting families
نویسنده
چکیده
Let t ≥ 26 and let F be a k-uniform hypergraph on n vertices. Suppose that |F1∩F2∩F3| ≥ t holds for all F1,F2,F3 ∈F . We prove that the size of F is at most (n−t k−t ) if p = k n satisfies p≤ 2 √ 4t +9−1 and n is sufficiently large. The above inequality for p is best possible.
منابع مشابه
Multiply-intersecting families revisited
Motivated by the Frankl’s results in [11] (“Multiply-intersecting families,” J. Combin. Theory (B) 1991), we consider some problems concerning the maximum size of multiply-intersecting families with additional conditions. Among other results, we show the following version of the Erdős–Ko–Rado theorem: for all r ≥ 8 and 1≤ t ≤ 2r+1−3r−1 there exist positive constants ε and n0 such that if n > n0...
متن کامل3-Wise Exactly 1-Intersecting Families of Sets
Let f(l,t,n) be the maximal size of a family F ⊂ 2[n] such that any l ≥ 2 sets of F have an exactly t ≥ 1-element intersection. If l ≥ 3, it trivially comes from [8] that the optimal families are trivially intersecting (there is a t-element core contained by all the members of the family). Hence it is easy to determine f(l, t, n) = ⌊ l 2(n− 1) ⌋ +1. Let g(l, t, n) be the maximal size of an l-wi...
متن کاملIntersecting Families — Uniform versus Weighted
What is the maximal size of k-uniform r-wise t-intersecting families? We show that this problem is essentially equivalent to determine the maximal weight of non-uniform r-wise t-intersecting families. Some EKR type examples and their applications are included.
متن کاملMultiply-intersecting families
Intersection problems occupy an important place in the theory of finite sets. One of the central notions is that of a r-wise r-intersecting family, that is, a collection holds for all choices of 1 < il < < i, < m. What is the maximal size m = m(n, r, t) of a r-wise t-intersecting family? Taking all subsets containing a fixed t-element set shows that m(n, r, 1) > 2 "-' holds for all n 3 f 2 0. O...
متن کاملIntersecting Families of Finite Sets and Fixed-point-Free 2-Elements
We study the maximum cardinality of a pairwise-intersecting family of subsets of an n-set, or the size of the smallest set in such a family, under either of the assumptions that it is regular (as a hypergraph) or that it admits a transitive permutation group. Not surprisingly, results under the second assumption are stronger. We also give some results for 4-wise intersecting families under the ...
متن کاملThe Maximum Size of 3-Wise Intersecting and 3-Wise Union Families
Let F be an n-uniform hypergraph on 2n vertices. Suppose that |F1 ∩ F2 ∩ F3| ≥ 1 and |F1 ∪ F2 ∪ F3| ≤ 2n− 1 holds for all F1, F2, F3 ∈ F . We prove that the size of F is at most ( 2n−2 n−1 ) .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 28 شماره
صفحات -
تاریخ انتشار 2007