Rubisco activase and wheat productivity under heat-stress conditions.
نویسندگان
چکیده
Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperatures (heat stress). Endogenous levels of RCA could serve as an important determinant of plant productivity under heat-stress conditions. Thus, in this study, the possible relationship between expression levels of RCA and plant yield in 11 European cultivars of winter wheat following prolonged exposure to heat stress was investigated. In addition, the effect of a short-term heat stress on RCA expression in four genotypes of wheat, five genotypes of maize, and one genotype of Arabidopsis thaliana was examined. Immunoblots prepared from leaf protein extracts from control plants showed three RCA cross-reacting bands in wheat and two RCA cross-reacting bands in maize and Arabidopsis. The molecular mass of the observed bands was in the range between 40 kDa and 46 kDa. Heat stress affected RCA expression in a few genotypes of wheat and maize but not in Arabidopsis. In wheat, heat stress slightly modulated the relative amounts of RCA in some cultivars. In maize, heat stress did not seem to affect the existing RCA isoforms (40 kDa and 43 kDa) but induced the accumulation of a new putative RCA of 45-46 kDa. The new putative 45-46 kDa RCA was not seen in a genotype of maize (ZPL 389) that has been shown to display an exceptional sensitivity to heat stress. A significant, positive, linear correlation was found between the expression of wheat 45-46 kDa RCA and plant productivity under heat-stress conditions. Results support the hypothesis that endogenous levels of RCA could play an important role in plant productivity under supraoptimal temperature conditions.
منابع مشابه
Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress OA
Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under eleva...
متن کاملDrought-induced Leaf Protein Alterations in Sensitive and Tolerant Wheat Varieties
Wheat plants with a fully developed first leaf were subjected to severe but recoverable water stress. Leaves from drought tolerant (Katya and Zlatitza) and drought sensitive (Sadovo and Miziya) varieties in control, drought and recovery conditions were used for the experiments. The physiological response of drought tolerant varieties did not differ from the one of drought sensitive varieties at...
متن کاملInhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate Carboxylase/Oxygenase
Increasing the leaf temperature of intact cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) plants caused a progressive decline in the light-saturated CO2-exchange rate (CER). CER was more sensitive to increased leaf temperature in wheat than in cotton, and both species demonstrated photosynthetic acclimation when leaf temperature was increased gradually. Inhibition of CER was not...
متن کاملEnhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.
Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under eleva...
متن کاملRelationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments.
Inhibition of net photosynthesis (Pn) by moderate heat stress has been attributed to an inability of Rubisco activase to maintain Rubisco in an active form. To examine this proposal, the temperature response of Pn, Rubisco activation, chlorophyll fluorescence, and the activities of Rubisco and Rubisco activase were examined in species from contrasting environments. The temperature optimum of Ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 60 14 شماره
صفحات -
تاریخ انتشار 2009