Maximum Eigenvalue Problem for Escherization

نویسندگان

  • Hiroshi Koizumi
  • Kokichi Sugihara
چکیده

A tiling of the plane is a collection of figures, called tiles, that cover the plane without gaps or overlaps except at their boundaries. Tilings have been used for various purposes, such as ornamentation for construction and design of clothes. The patterns made by tilings range from those made by simple geometrical figures to those made by intricate figures, and they attract a great deal of interest from both artists and mathematicians. From a mathematical point of view, the placement rules, incidence types, and other properties of tilings have been considered deeply [1]. The Dutch woodblock artist M. C. Escher is one of the greatest artists of artistic tilings. His works include many tilings made of animal forms based on his own trial-and-error approaches. Kaplan and Salesin [3] first introduced the problem of finding tilings automatically in which the tiles are similar to a given shape. This problem is called the Escherization problem, named after Escher and his elegant work. More precisely, the Escherization problem is as follows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dihedral Escherization

“Escherization” [9] is a process that finds an Escher-like tiling of the plane from tiles that resemble a user-supplied goal shape. We show how the original Escherization algorithm can be adapted to the dihedral case, producing tilings with two distinct shapes. We use a form of the adapted algorithm to create drawings in the style of Escher’s print Sky and Water. Finally, we develop an Escheriz...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Analysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives

In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2011