Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium.

نویسندگان

  • Chang Lau
  • Christian Lytle
  • Daniel S Straus
  • Kathryn A DeFea
چکیده

Studies suggest that there are two distinct pools of proteinase-activated receptor-2 (PAR₂) present in intestinal epithelial cells: an apical pool accessible from the lumen, and a basolateral pool accessible from the interstitial space and blood. Although introduction of PAR₂ agonists such as 2-furoyl-LIGRL-O-NH₂ (2fAP) to the intestinal lumen can activate PAR₂, the presence of accessible apical PAR₂ has not been definitively shown. Furthermore, some studies have suggested that basolateral PAR₂ responses in the intestinal epithelium are mediated indirectly by neuropeptides released from enteric nerve fibers, rather than by intestinal PAR₂ itself. Here we identified accessible pools of both apical and basolateral PAR₂ in cultured Caco2-BBe monolayers and in mouse ileum. Activation of basolateral PAR₂ transiently increased short-circuit current by activating electrogenic Cl⁻ secretion, promoted dephosphorylation of the actin filament-severing protein, cofilin, and activated the transcription factor, AP-1, whereas apical PAR₂ did not. In contrast, both pools of PAR₂ activated extracellular signal-regulated kinase 1/2 (ERK1/2) via temporally and mechanistically distinct pathways. Apical PAR₂ promoted a rapid, biphasic PLCβ/Ca²(+)/PKC-dependent ERK1/2 activation, resulting in nuclear localization, whereas basolateral PAR₂ promoted delayed ERK1/2 activation which was predominantly restricted to the cytosol, involving both PLCβ/Ca²(+) and β-arrestin-dependent pathways. These results suggest that the outcome of PAR₂ activation is dependent on the specific receptor pool that is activated, allowing for fine-tuning of the physiological responses to different agonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane receptor location defines receptor interaction with signaling proteins in a polarized epithelium.

Signal transduction from receptors is mediated by the interaction of activated receptors with proximate downstream signaling proteins. In polarized epithelial cells, the membrane is divided into subdomains: the apical and basolateral membranes. Membrane receptors may be present in one or both subdomains. Using a combination of immunoprecipitation and Western blot analyses, we tested the hypothe...

متن کامل

Adrenergic receptor activated ion transport in human fetal retinal pigment epithelium.

PURPOSE To identify the apical and basolateral membrane mechanisms and intracellular signaling pathways in human fetal retinal pigment epithelium (HRPE) that mediate membrane voltage and resistance changes caused by apical membrane adrenergic receptor activation. METHODS Intact sheets of RPE-choroid from human fetal eyes were mounted in a modified Ussing chamber. Ringer's solution composition...

متن کامل

The study of microanatomy of intestinal epithelium in the Chinese soft-shelled turtle (Pelodiscus sinensis)

The microanatomy of the intestinal epithelium in the Chinese soft-shelled turtle (CST) was studied by light and transmission electron microscopy (TEM). The small intestinal epithelium (SIE) was single layered or pseudostratified. The enterocytes contained mitochondria or mitochondria and lipid droplets. The enterocytes were arranged tightly in the apical parts of epithelium and connected by des...

متن کامل

Ion transport mechanisms in native human retinal pigment epithelium.

Electrophysiologic techniques were used to characterize the electrical properties and the ion transport mechanisms at the apical and basolateral membranes of the human retinal pigment epithelium (RPE). These experiments used fresh native tissue from adult donor and fetal eyes. In the upper range, adult donor RPE had an apical membrane resting potential (VA) of approximately equal to -60 mV and ...

متن کامل

Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2.

Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2011