Coexisting Behaviors of Asymmetric Attractors in Hyperbolic-Type Memristor based Hopfield Neural Network

نویسندگان

  • Bocheng Bao
  • Hui Qian
  • Quan Xu
  • Mo Chen
  • Jiang Wang
  • Yajuan Yu
چکیده

A new hyperbolic-type memristor emulator is presented and its frequency-dependent pinched hysteresis loops are analyzed by numerical simulations and confirmed by hardware experiments. Based on the emulator, a novel hyperbolic-type memristor based 3-neuron Hopfield neural network (HNN) is proposed, which is achieved through substituting one coupling-connection weight with a memristive synaptic weight. It is numerically shown that the memristive HNN has a dynamical transition from chaotic, to periodic, and further to stable point behaviors with the variations of the memristor inner parameter, implying the stabilization effect of the hyperbolic-type memristor on the chaotic HNN. Of particular interest, it should be highly stressed that for different memristor inner parameters, different coexisting behaviors of asymmetric attractors are emerged under different initial conditions, leading to the existence of multistable oscillation states in the memristive HNN. Furthermore, by using commercial discrete components, a nonlinear circuit is designed and PSPICE circuit simulations and hardware experiments are performed. The results simulated and captured from the realization circuit are consistent with numerical simulations, which well verify the facticity of coexisting asymmetric attractors' behaviors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient hidden chaotic attractors in a Hopfield neural system

In this letter we unveil the existence of transient hidden coexisting chaotic attractors, in a simplified Hopfield neural network with three neurons. keyword Hopfield neural network; Transient hidden chaotic attractor; Limit cycle

متن کامل

Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay

A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical phenomena, including single-periodic,multiple-periodic, and chaoticmotions, are found to exist.The existence of chaotic attractors is verifi...

متن کامل

Some Remarkable Properties of a Hopfield Neural Network with Time Delay

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections....

متن کامل

High Performance Associative Memory Models and Symmetric Connections

Two existing high capacity training rules for the standard Hopfield architecture associative memory are examined. Both rules, based on the perceptron learning rule produce asymmetric weight matrices, for which the simple dynamics (only point attractors) of a symmetric network can no longer be guaranteed. This paper examines the consequences of imposing a symmetry constraint in learning. The mea...

متن کامل

On the Capacity of Hopfield Neural Networks as EDAs for Solving Combinatorial Optimisation Problems

Multi-modal optimisation problems are characterised by the presence of either local sub-optimal points or a number of equally optimal points. These local optima can be considered as point attractors for hill climbing search algorithms. It is desirable to be able to model them either to avoid mistaking a local optimum for a global one or to allow the discovery of multiple equally optimal solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017