Inducing n-gon of an arrangement of lines

نویسندگان

  • Ludmila Scharf
  • Marc Scherfenberg
چکیده

We show that an arrangement A of n lines in general position in the plane with n ≥ 3 has an inducing polygon of size n. The proof is constructive, that is we describe an algorithm that constructs a simple ngon inducing A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Simple Arrangement of n Lines Contains an Inducing Simple n-gon

We show that for any arrangement A of n lines in general position in the plane there exists a simple closed polygon with n edges having the property that every edge of the polygon lies on a distinct line of A.

متن کامل

Inducing Polygons of Line Arrangements

We show that an arrangement A of n lines in general position in the plane has an inducing polygon of size O(n). Additionally, we present a simple algorithm for finding an inducing n-path for A in O(n log n) time and an algorithm that constructs an inducing n-gon for a special class of line arrangements within the same time bound. Eligible for best student paper

متن کامل

Arrangements of Lines with a Large Number of Triangles

An arrangement of lines is constructed by choosing n diagonals of the regular 2/i-gon. This arrangement is proved to form at least n(n 3)/3 triangular cells.

متن کامل

On Inducing Polygons and Related Problems

Bose et al. [1] asked whether for every simple arrangement A of n lines in the plane there exists a simple n-gon P that induces A by extending every edge of P into a line. We prove that such a polygon always exists and can be found in O(n log n) time. In fact, we show that every finite family of curves C such that every two curves intersect at least once and finitely many times and no three cur...

متن کامل

Counting Convex k-gons in an Arrangement of Line Segments

Let A(S) be the arrangement formed by a set of n line segments S in the plane. A subset of arrangement vertices p1, p2, . . . , pk is called a convex k-gon of A(S) if (p1, p2, . . . , pk) forms a convex polygon and each of its sides, namely, (pi, pi+1) is part of an input segment. We want to count the number of distinct convex k-gons in the arrangement A(S), of which there can be Θ(n) in the wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009