No consistent relationship between gamma power and peak frequency in macaque primary visual cortex.

نویسندگان

  • Xiaoxuan Jia
  • Dajun Xing
  • Adam Kohn
چکیده

Neural activity in the gamma frequency range ("gamma") is elevated during active cognitive states. Gamma has been proposed to play an important role in cortical function, although this is debated. Understanding what function gamma might fulfill requires a better understanding of its properties and the mechanisms that generate it. Gamma is characterized by its spectral power and peak frequency, and variations in both parameters have been associated with changes in behavioral performance. Modeling studies suggest these properties are co-modulated, but this has not been established. To test the relationship between these properties, we measured local field potentials (LFPs) and neuronal spiking responses in primary visual cortex of anesthetized monkeys, for drifting sinusoidal gratings of different sizes, contrasts, orientations and masked with different levels of noise. We find that there is no fixed relationship between LFP gamma power and peak frequency, and neither is related to the strength of spiking activity. We propose a simple model that can account for the complex stimulus dependence we observe, and suggest that separate mechanisms determine gamma power and peak frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamma Frequency and the Spatial Tuning of Primary Visual Cortex

Visual stimulation produces oscillatory gamma responses in human primary visual cortex (V1) that also relate to visual perception. We have shown previously that peak gamma frequency positively correlates with central V1 cortical surface area. We hypothesized that people with larger V1 would have smaller receptive fields and that receptive field size, not V1 area, might explain this relationship...

متن کامل

LFP power spectra in V1 cortex: the graded effect of stimulus contrast.

We recorded local field potentials (LFPs) and single-unit activity simultaneously in the macaque primary visual cortex (V1) and studied their responses to drifting sinusoidal gratings that were chosen to be "optimal" for the single units. Over all stimulus conditions, the LFP spectra have much greater power in the low-frequency band (< or = 10 Hz) than higher frequencies and can be described as...

متن کامل

Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.

Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detai...

متن کامل

Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.

Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the...

متن کامل

Searching for autocoherence in the cortical network with a time-frequency analysis of the local field potential.

Gamma-band peaks in the power spectrum of local field potentials (LFP) are found in multiple brain regions. It has been theorized that gamma oscillations may serve as a 'clock' signal for the purposes of precise temporal encoding of information and 'binding' of stimulus features across regions of the brain. Neurons in model networks may exhibit periodic spike firing or synchronized membrane pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2013