The pyroelectric energy harvesting capabilities of PMN--PT near the morphotropic phase boundary

نویسندگان

  • Razmig Kandilian
  • Laurent Pilon
چکیده

This paper reports on direct thermal to electrical energy conversion by performing the Olsen cycle on pyroelectric materials. The energy harvesting capability of commercially available [001] oriented 68PbMg1/3Nb2/3O3–32PbTiO3 (PMN–32PT) single crystal capacitors was measured experimentally. An energy density of 100 mJ cm−3/cycle, corresponding to 4.92 mW cm−3, was obtained by successively dipping the material in oil baths at temperatures 80 and 170 ◦C and cycling the electric field between 2 and 9 kV cm−1. Similarly, an energy density of 55 mJ cm−3/cycle was obtained between 80 and 140 ◦C. An estimated 40% of this energy resulted from the strain polarization due to the rhombohedral to tetragonal phase transition. The strain from this transition disappeared when the maximum operating temperature exceeded the Curie temperature of about 150 ◦C. The optimal low electric field used in the Olsen cycle maximizing the energy harvested was found to be around 2 kV cm−1. In addition, the material suffered from (i) dielectric breakdown for electric fields larger than 9 kV cm−1 and (ii) cracking from thermal stress for operating temperature differences in excess of 90 ◦C. A physical model predicting the total amount of energy harvested was also derived, accounting for thermal expansion as well as temperature dependent dielectric constant and spontaneous polarization. The model predictions fell within 20% of the experimental results in the temperature range between 80 and 170 ◦C and electric fields ranging from 2 to 9 kV cm−1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films

Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films Xihong Hao, Ye Zhao, and Qi Zhang 1-School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China 2-State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China 3-Department of Manufacturing and ...

متن کامل

Complete set of material constants of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3)single crystal with morphotropic phase boundary composition.

Using combined resonance and ultrasonic methods, a full set of material constants has been measured for morphotropic phase boundary (MPB) composition xPb(In(12)Nb(12))O(3)-(1-x-y)Pb(Mg(13)Nb(23))O(3)-yPbTiO(3) (PIN-PMN-PT) single crystals poled along [001](c). Compared with the MPB composition (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) (PMN-PT) single crystals, the PIN-PMN-PT single crystals have smal...

متن کامل

High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstan...

متن کامل

Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x - T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization ca...

متن کامل

Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1-x)PbMg1/3Nb2/3O₃-xPbT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011