Biophysical characterization and modeling of human Ecdysoneless (ECD) protein supports a scaffolding function

نویسندگان

  • Riyaz A. Mir
  • Jeff Lovelace
  • Nicholas P. Schafer
  • Peter D. Simone
  • Admir Kellezi
  • Carol Kolar
  • Gaelle Spagnol
  • Paul L. Sorgen
  • Hamid Band
  • Vimla Band
  • Gloria E. O. Borgstahl
چکیده

The human homolog of Drosophila ecdysoneless protein (ECD) is a p53 binding protein that stabilizes and enhances p53 functions. Homozygous deletion of mouse Ecd is early embryonic lethal and Ecd deletion delays G1-S cell cycle progression. Importantly, ECD directly interacts with the Rb tumor suppressor and competes with the E2F transcription factor for binding to Rb. Further studies demonstrated ECD is overexpressed in breast and pancreatic cancers and its overexpression correlates with poor patient survival. ECD overexpression together with Ras induces cellular transformation through upregulation of autophagy. Recently we demonstrated that CK2 mediated phosphorylation of ECD and interaction with R2TP complex are important for its cell cycle regulatory function. Considering that ECD is a component of multiprotein complexes and its crystal structure is unknown, we characterized ECD structure by circular dichroism measurements and sequence analysis software. These analyses suggest that the majority of ECD is composed of α-helices. Furthermore, small angle X-ray scattering (SAXS) analysis showed that deletion fragments, ECD(1-432) and ECD(1-534), are both well-folded and reveals that the first 400 residues are globular and the next 100 residues are in an extended cylindrical structure. Taking all these results together, we speculate that ECD acts like a structural hub or scaffolding protein in its association with its protein partners. In the future, the hypothetical model presented here for ECD will need to be tested experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-autonomous roles of the ecdysoneless gene in Drosophila development and oogenesis.

Steroid signaling underlies developmental processes in animals. Mutations that impair steroidogenesis in the fruit fly Drosophila melanogaster provide tools to dissect steroid hormone action genetically. The widely used temperature-sensitive mutation ecdysoneless(1) (ecd(1)) disrupts production of the steroid hormone ecdysone, and causes developmental and reproductive defects. These defects can...

متن کامل

Unexpected Role of the Steroid-Deficiency Protein Ecdysoneless in Pre-mRNA Splicing

The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone...

متن کامل

Overexpression of Ecdysoneless (Ecd) in Pancreatic Cancer and its Role in Oncogenesis by Regulating Glycolysis

Purpose: To study the expression and function of a novel cell cycle regulatory protein, human ecdysoneless (Ecd), during pancreatic cancer (PC) pathogenesis. Experimental Design: Immunohistochemical expression profiling of Ecd was done in nonneoplastic normal pancreatic tissues and pancreatic ductal adenocarcinoma lesions (from tissue microarray and Rapid Autopsy program) as well as precancerou...

متن کامل

Overexpression of ecdysoneless in pancreatic cancer and its role in oncogenesis by regulating glycolysis.

PURPOSE To study the expression and function of a novel cell-cycle regulatory protein, human ecdysoneless (Ecd), during pancreatic cancer pathogenesis. EXPERIMENTAL DESIGN Immunohistochemical expression profiling of Ecd was done in nonneoplastic normal pancreatic tissues and pancreatic ductal adenocarcinoma lesions (from tissue microarray and Rapid Autopsy program) as well as precancerous Pan...

متن کامل

Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development.

Hormonal regulation in development and maintenance of synaptic transmission involves examination of both the presynaptic and postsynaptic components and a system in which the hormones can be controlled. We used the ecdysoneless heat-sensitive mutation (l(3)ecd(1)/l(3)ecd(1)) of Drosophila to provide the ability to regulate endogenous ecdysone production at various larval stages. In conjunction,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016