Chloroquine Treatment Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis
نویسندگان
چکیده
BACKGROUND The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was investigated as well. METHODOLOGY/PRINCIPAL FINDINGS EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG35-55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset. CONCLUSION We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of EAE-inflicted mice, both in prophylactic and therapeutic approaches. We hypothesized that the increased number of regulatory T cells induced by the CQ treatment is involved in the reduction of the clinical signs of EAE.
منابع مشابه
Increase in CD4+Foxp3+ Regulatory T cells and Amelioration of Experimental Autoimmune Encephalomyelitis in Mice Treated with IL-27
Background and purpose: In multiple sclerosis (MS) and its murine model, experimental autoimmune encephalomyelitis (EAE), chronic inflammation damages the myelin of central nervous system. Recently, interleukin-27 (IL-27) has been recognized as a feasible choice for treatment of autoimmune diseases such as MS due to its anti-inflammatory properties. However, the underlying mechanisms have not y...
متن کاملP 28: Bone Marrow-Derived Mesenchymal Stem Cells Reduces Neuroinflammation and Splenic Cytolytic CD8 + T Cells in Mice with Experimental Autoimmune Encephalomyelitis
Introduction: Multiple sclerosis (MS) has been recognized as a common neurodegenerative disease that occurs after an Auto reactive T cells against myelin antigens. Demyelination and inflammation are the main features of this disease. The anti-inflammatory and neuroprotective roles of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as a suitable tre...
متن کاملCutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis.
The glucocorticoid-induced TNFR (GITR) is expressed at high levels on resting CD4(+)CD25(+) T regulatory (T(R)) cells and regulates their suppressive phenotype. Accordingly, we show that anti-GITR mAb treatment of SJL mice with proteolipid protein 139-151-induced experimental autoimmune encephalomyelitis significantly exacerbated clinical disease severity and CNS inflammation, and induced eleva...
متن کاملPertussis toxin reduces the number of splenic Foxp3+ regulatory T cells.
Pertussis toxin (PTx) is a bacterial toxin used to enhance the severity of experimental autoimmune diseases such as experimental autoimmune encephalomyelitis. It is known to promote permeabilization of the blood-brain barrier, maturation of APC, activation of autoreactive lymphocytes and alteration of lymphocyte migration. In this study, we show that i.v. injection of PTx in mice induces a decr...
متن کاملTim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation.
T cell Ig and mucin domain (Tim)-1 identifies IL-10-producing regulatory B cells (Bregs). Mice on the C57BL/6 background harboring a loss-of-function Tim-1 mutant showed progressive loss of IL-10 production in B cells and with age developed severe multiorgan tissue inflammation. We demonstrate that Tim-1 expression and signaling in Bregs are required for optimal production of IL-10. B cells wit...
متن کامل