Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation
نویسندگان
چکیده
The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.
منابع مشابه
Anti-tumor effects of shikonin derivatives on human medullary thyroid carcinoma cells
New treatment options are needed for medullary thyroid carcinoma (MTC), a highly metastasizing neuroendocrine tumor that is resistant to standard radiotherapy and chemotherapy. We show that the following shikonin derivatives inhibit cell proliferation and cell viability of the MTC cell line TT: acetylshikonin, β,β-dimethylacrylshikonin, shikonin and a petroleum ether extract of the roots of Ono...
متن کاملShikonin as an inhibitor of the LPS-induced epithelial-to-mesenchymal transition in human breast cancer cells.
Shikonin (SK), a natural naphthoquinone isolated from the Chinese medicinal herb, has been known to suppress the proliferation of several cancer cells. However, its role in the epithelial mesenchymal transition (EMT) has yet to be demonstrated. The aim of the present study was to examine the effects of SK on EMT. Lipopolysaccharide (LPS) induced EMT-like phenotypic changes, enhancing cell migra...
متن کاملShikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes.
Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7) with shikonin treatment and found a positive relationship between the level of se...
متن کاملShikonin Suppresses Human T Lymphocyte Activation through Inhibition of IKKβ Activity and JNK Phosphorylation
The key role of T cells has been elaborated in mediating immune responses and pathogenesis of human inflammatory and autoimmune conditions. In the current study the effect of shikonin, a compound isolated from a medicinal plant, on inhibition of T-cell activation was firstly examined by using primary human T lymphocytes isolated from buffy coat. Results showed that shikonin dose dependently sup...
متن کاملShikonin Promotes Skin Cell Proliferation and Inhibits Nuclear Factor-κB Translocation via Proteasome Inhibition In Vitro
BACKGROUND Shikonin is a major active chemical component extracted from Lithospermi Radix, an effective traditional herb in various types of wound healing. Shikonin can accelerate granulomatous tissue formation by the rat cotton pellet method and induce neovascularization in granulomatous tissue. The purpose of the study was to investigate its mechanism of action in human skin cells. METHODS ...
متن کامل