Capabilities and Limitations of Feedforward Neural Networks with Multilevel Neurons

نویسندگان

  • Aleksander Malinowski
  • Tomasz J. Cholewo
  • Jacek M. Zurada
چکیده

This paper proposes a multilevel logic approach to output coding using multilevel neurons in the output layer. Training convergence for a single multilevel perceptron is considered. It has been found that a multilevel neural network classifier with a reduced number of outputs is often able to learn faster and requires fewer weights. Concepts are illustrated with an example of a digit classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

Multivalued Logic Mapping of Neurons in Feedforward Networks

A common view of feedforward neural networks is that of a black box since the knowledge embedded in the connection weights of a feedforward neural network is generally considered incomprehensible. Many researchers have addressed this deficiency of neural networks by suggesting schemes to obtain a Boolean logic representation for the output of a neuron based on its connection weights. However, t...

متن کامل

Prediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks

In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina C...

متن کامل

مروری بر شبکه­ های عصبی کوانتومی

In this paper the development of quantum neural networks (QNN), and some of presented models and physical implementation are reviewed. How of making use of double-slit experiment for implementing QNN and methods of designing as well as examples of two-layer hybrid networks in QNN constructed from quantum neurons and classical neurons are represented. Some application models of the networks (QNN...

متن کامل

بررسی کارایی روش‌های مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)

Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995