Estimation of rice growth parameters by X-band radar backscattering data
نویسندگان
چکیده
Microwave remote sensing has great potential, especially in monsoon Asia, since optical observations are often hampered by cloudy conditions. The radar backscattering characteristics of rice crop were investigated with a ground-based automatic scatterometer system. The system was installed inside a shelter in an experimental paddy field at the National Institute of Agricultural Science and Technology (NIAST) before transplanting. The rice cultivar was a kind of Japonica type, called Chuchung. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables, and a personal computer that controls frequency, polarization and data storage. This system automatically measures fully-polarimatric backscattering coefficients of rice crop every 10 minutes, accompanied by a digital camera that takes pictures in a fixed position with the same interval. The backscattering coefficients were calculated by applying a radar equation. Plant variables, such as leaf area index (LAI), biomass, plant height and weather conditions were measured periodically throughout the rice growth season. We have performed polarimetric decomposition of paddy data such as single, double and volume scattering to extract the scattering information effectively. We investigated the relationships between backscattering coefficients and the plant variables.
منابع مشابه
Determining Rice Growth Stage with X-Band SAR: A Metamodel Based Inversion
Rice crops are important in the global food economy, and new techniques are being implemented for their effective management. These techniques rely mainly on the changes in the phenological cycle, which can be investigated by remote sensing systems. High frequency and high spatial resolution Synthetic Aperture Radar (SAR) sensors have great potential in all-weather conditions for detecting temp...
متن کاملRice biomass retrieval from advanced synthetic aperture radar image based on radar backscattering measurement
A biomass inversion algorithm based on a semi-empirical scattering model has been developed by using the simultaneous observation data, which are obtained by ground-based and space-based scatterometers during the rice-growing season. Three steps are applied to build the algorithm: (1) the backscattering coefficients are collected in eight acquisitions at different growth periods. Meanwhile, the...
متن کاملImprovement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method
Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...
متن کاملMonitoring Rice Phenology Based on Backscattering Characteristics of Multi-Temporal RADARSAT-2 Datasets
Accurate estimation and monitoring of rice phenology is necessary for the management and yield prediction of rice. The radar backscattering coefficient, one of the most direct and accessible parameters has been proved to be capable of retrieving rice growth parameters. This paper aims to investigate the possibility of monitoring the rice phenology (i.e., transplanting, vegetative, reproductive,...
متن کاملA Multi-Year Study on Rice MorphologicalParameter Estimation with X-Band Polsar Data
Rice fields have been monitored with spaceborne Synthetic Aperture Radar (SAR) systems for decades. SAR is an essential source of data and allows for the estimation of plant properties such as canopy height, leaf area index, phenological phase, and yield. However, the information on detailed plant morphology in meter-scale resolution is necessary for the development of better management practic...
متن کامل