Universality of General β-Ensembles

نویسندگان

  • Paul Bourgade
  • László Erdős
  • Horng-Tzer Yau
چکیده

We prove the universality of the β-ensembles with convex analytic potentials and for any β > 0, i.e. we show that the spacing distributions of log-gases at any inverse temperature β coincide with those of the Gaussian β-ensembles. AMS Subject Classification (2010): 15B52, 82B44

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bulk Universality of General β-Ensembles with Non-convex Potential

We prove the bulk universality of the β-ensembles with non-convex regular analytic potentials for any β > 0. This removes the convexity assumption appeared in the earlier work [6]. The convexity condition enabled us to use the logarithmic Sobolev inequality to estimate events with small probability. The new idea is to introduce a “convexified measure” so that the local statistics are preserved ...

متن کامل

An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles

We survey the current status of universality limits for m-point correlation functions in the bulk and at the edge for unitary ensembles, primarily when the limiting kernels are Airy, Bessel, or Sine kernels. In particular, we consider underlying measures on compact intervals, and fixed and varying exponential weights, as well as universality limits for a variety of orthogonal systems. The scope...

متن کامل

Bulk Universality for One-dimensional Log-gases

In this note we consider β-ensembles with real analytic potential and arbitrary inverse temperature β, and review some recent universality results for these measures, obtained in joint works with L. Erdős and H.-T. Yau. In the limit of a large number of particles, the local eigenvalues statistics in the bulk are universal: they coincide with the spacing statistics for the Gaussian β-ensembles. ...

متن کامل

Edge Universality of Beta Ensembles

We prove the edge universality of the beta ensembles for any β > 1, provided that the limiting spectrum is supported on a single interval, and the external potential is C 4 and regular. We also prove that the edge universality holds for generalized Wigner matrices for all symmetry classes. Moreover, our results allow us to extend bulk universality for beta ensembles from analytic potentials to ...

متن کامل

Universality for Orthogonal and Symplectic Laguerre-type Ensembles

We give a proof of the Universality Conjecture for orthogonal (β = 1) and symplectic (β = 4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. They concern the appropriately rescaled kernels K n,β , correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011