Deformations and Inversion Formulas for Formal Automorphisms in Noncommutative Variables

نویسنده

  • Wenhua Zhao
چکیده

Let z = (z1, z2, · · · , zn) be noncommutative free variables and t a formal parameter which commutes with z. Let k be a unital commutative ring of any characteristic and Ft(z) = z−Ht(z) with Ht(z) ∈ k[[t]]〈〈z〉〉 ×n and o(Ht(z)) ≥ 2. Note that Ft(z) can be viewed as a deformation of the formal map F (z) := z−Ht=1(z) when it makes sense. The inverse map Gt(z) of Ft(z) can always be written as Gt(z) = z + Mt(z) with Mt(z) ∈ k[[t]]〈〈z〉〉 ×n and o(Mt(z)) ≥ 2. In this paper, we first derive the PDE’s satisfied by Mt(z) and u(Ft), u(Gt) ∈ k[[t]]〈〈z〉〉 with u(z) ∈ k〈〈z〉〉 in the general case as well as in the special case when Ht(z) = tH(z) for some H(z) ∈ k〈〈z〉〉×n. We also show that the elements above are actually characterized by certain Cauchy problems of these PDE’s. Secondly, We apply the derived PDE’s to prove a recurrent inversion formula for formal maps in noncommutative variables. Finally, for the case char.k = 0, we derive an expansion inversion formula by the planar binary rooted trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Symmtric Functions and the Inversion Problem

Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...

متن کامل

Noncommutative Symmetric Functions and the Inversion Problem

Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...

متن کامل

Ncs Systerms over Differential Operator Algebras and the Grossman-larson Hopf Algebras of Labeled Rooted Trees

Let K be any unital commutative Q-algebra and W any non-empty subset of N. Let z = (z1, . . . , zn) be commutative or noncommutative free variables and t a formal central parameter. Let D〈〈z〉〉 (α ≥ 1) be the unital algebra generated by the differential operators ofK〈〈z〉〉 which increase the degree in z by at least α− 1 and A [α] t 〈〈z〉〉 the group of automorphisms Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 w...

متن کامل

Gerstenhaber Brackets for Skew Group Algebras

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...

متن کامل

Group Actions on Algebras and the Graded Lie Structure of Hochschild Cohomology

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007