Approximating the geometric minimum-diameter spanning tree
نویسندگان
چکیده
Given a set P of points in the plane, a geometric minimum-diameter spanning tree (GMDST) of P is a spanning tree of P such that the longest path through the tree is minimized. In this paper, we present an approximation algorithm that generates a tree whose diameter is no more than (1+ ) times that of a GMDST, for any > 0. Our algorithm reduces the problem to several grid-aligned versions of the problem and runs within time O( −3 + n) and space O(n) improving the result by Gudmundsson et al. [4].
منابع مشابه
Geometric Minimum Diameter Minimum Cost Spanning Tree Problem
In this paper we consider bi-criteria geometric optimization problems, in particular, the minimum diameter minimum cost spanning tree problem and the minimum radius minimum cost spanning tree problem for a set of points in the plane. The former problem is to construct a minimum diameter spanning tree among all possible minimum cost spanning trees, while the latter is to construct a minimum radi...
متن کاملSpanners for Geometric Intersection Graphs
Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R, a (1+ǫ)-spanner with O(nǫ) edges is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest pair problems. The spanner construction has almost equivalent complexity to the construction of Euclidean minimum spanning trees. The resul...
متن کاملApproximating the Geometric Minimum-Diameter Spanning Tree
Let P be a set of n points in the plane. The geometric minimum-diameter spanning tree (MDST) of P is a tree that spans P and minimizes the Euclidian length of the longest path. It is known that there is always a monoor a dipolar MDST, i.e. a MDST whose longest path consists of two or three edges, respectively. The more difficult dipolar case can so far only be solved in O(n) time. This paper ha...
متن کاملDynamic Half-Space Reporting, Geometric Optimization, and Minimum Spanning Trees
We describe dynamic data structures for half-space range reporting and for maintaining the minima of a decomposable function. Using these data structures, we obtain efficient dynamic algorithms for a number of geometric problems, including closest/farthest neighbor searching, fixed dimension linear programming, bi-chromatic closest pair, diameter, and Euclidean minimum spanning tree.
متن کاملA Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کامل