Local stability criterion for a gravitating disk of stars
نویسندگان
چکیده
Computer N -body experiments are desribed which test the validities of the original Toomre’s (1964) criterion and of a generalized criterion for local stability of Jeans-type perturbations in a self-gravitating, infinitesimally thin, and practically collisionless disk of stars. The fact that the nonaxisymmetric perturbations in the differentially rotating system are more unstable than the axisymmetric ones is taken into account in this generalized criterion. It is shown that for differentially rotating disks, the generalized criterion works as well as Toomre’s ordinary criterion does for rigidly rotating ones. A modest discrepancy is observed between the analytical stability criteria and the numerical results. We tentatively attribute this to the shortcomings of the asymptotic density wave theory and possibly additional ones introduced by approximations in the local numerical code employed here. In addition, the linear stability theory of small oscillations of a disk of stars is reexamined by using the method of particle orbit theory. This representation gives new insight into the problem of gravitating disk stability. Certain applications of the theory and theN -body simulations to actual disk-shaped spiral galaxies are explored as well.
منابع مشابه
Local stability criterion for self-gravitating disks in modified gravity
We study local stability of self-gravitating fluid and stellar disk in the context of modified gravity theories which predict a Yukawa-like term in the gravitational potential of a point mass. We investigate the effect of such a Yukawa-like term on the dynamics of self-gravitating disks. More specifically, we investigate the consequences of the presence of this term for the local stability of t...
متن کاملGlobal spiral modes in multi - component disks
We performed two-dimensional non-linear hydrodynamical simulations of two-component gravitating disks aimed at studying stability properties of these systems. In agreement with previous analytical and numerical simulations, we find that the cold gas component strongly affects the growth rates of the unstable global spiral modes in the disk. Already a five percent admixture of cold gas increases...
متن کاملGaseous Disks of Spiral Galaxies: Arms and Rings
An improved linear stability theory of small-amplitude oscillations of a self-gravitating, infinitesimally thin gaseous disk of spiral galaxies has been developed. It was shown that in the differentially rotating disks for nonaxisymmetric perturbations Toomre’s modified critical Q-parameter is larger than the standard one. We use hydrodynamical simulations to test the validity of the modified l...
متن کاملAxisymmetric Bending Oscillations of Stellar Disks
Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion norm...
متن کاملMagnetorotationally-Driven Galactic Turbulence and the Formation of Giant Molecular Clouds
Giant molecular clouds (GMCs), where most stars form, may originate from self-gravitating instabilities in the interstellar medium. Using local threedimensional magnetohydrodynamic simulations, we investigate ways in which galactic turbulence associated with the magnetorotational instability (MRI) may influence the formation and properties of these massive, self-gravitating clouds. Our disk mod...
متن کامل