Incomplete Inverse Preconditioners

نویسندگان

  • Muhittin Gökmen
  • Fernando Alvarado
چکیده

Incomplete LU factorization is a valuable preconditioning approach for sparse iterative solvers. An “ideal” but inefficient preconditioner for the iterative solution of Ax = b is A−1 itself. This paper describes a preconditioner based on sparse approximations to partitioned representations of A−1, in addition to the results of implementation of the proposed method in a shared memory parallel environment. The partitioned inverses are normally somewhat sparse. Their sparsity can be enhanced with suitable ordering and partitioning algorithms. Sparse approximations to these partitioned inverse representations can be obtained either by discarding selected nonzero entries of these inverses or by precluding the creation of some inversion fills. Experimental results indicate that the use of these partitioned incomplete inverses as preconditioners results in excellent highly parallel preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward an Effective Sparse Approximate Inverse Preconditioner

Sparse approximate inverse preconditioners have attracted much attention recently, because of their potential usefulness in a parallel environment. In this paper, we explore several performance issues related to effective sparse approximate inverse preconditioners (SAIPs) for the matrices derived from PDEs. Our refinements can significantly improve the quality of existing SAIPs and/or reduce th...

متن کامل

Approximate Inverse Preconditioners for General Sparse Matrices

The standard Incomplete LU (ILU) preconditioners often fail for general sparse indeenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI?AMk F , where AM is the preconditioned matrix. An iterative descent-type method...

متن کامل

Almost optimal order approximate inverse based preconditioners for 3-d convection dominated problems on tensor-grids

For a one-dimensional diffusion problem on an refined computational grid we present preconditioners based on the standard approximate inverse technique. Next, we determine its spectral condition number κ2 and perform numerical calculations which corroborate the result. Then we perform numerical calculations which show that the standard approximate inverse preconditioners and our modified versio...

متن کامل

Approximate Inverse Preconditioners via Sparse-Sparse Iterations

The standard incomplete LU (ILU) preconditioners often fail for general sparse in-deenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI ? AMk F , where AM is the preconditioned matrix. An iterative descent-type met...

متن کامل

Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation∗

Within the framework of shifted-Laplace preconditioners [Erlangga, Vuik, Oosterlee, Appl. Numer. Math., 50(2004), pp.409–425] for the Helmholtz equation, different methods for the approximation of the inverse of a complex-valued Helmholtz operator are discussed. The performance of the preconditioner for Helmholtz problems at high wavenumbers in heterogeneous media is evaluated. Comparison with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003