Mineralized Collagen: Rationale, Current Status, and Clinical Applications
نویسندگان
چکیده
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
منابع مشابه
Physically based 3D finite element model of a single mineralized collagen microfibril.
Mineralized collagen microfibrils in human bone provide its mechanical properties (stiffness, elasticity, ductility, energy dissipation and strength). However, detailed 3D finite element models describing the mechanical behavior of the mineralized collagen microfibrils are still lacking. In the current work, we developed a 3D finite element model of the mineralized collagen microfibril that inc...
متن کاملCollagen as a scaffold for biomimetic mineralization of vertebrate tissues
Collagen is a well known protein component that has the capacity to mineralize in a variety of vertebrate tissues. In its mineralized form, collagen potentially can be utilized as a biomimetic material for a variety of applications, including, for example, the augmentation and repair of damaged, congenitally defective, diseased or otherwise impaired calcified tissues such as bone and cartilage....
متن کاملSynergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects
The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and fur...
متن کاملAblating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis
Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recen...
متن کاملIn situ mechanical and molecular investigations of collagen/apatite biomimetic composites combining Raman spectroscopy and stress-strain analysis.
We report the design, fabrication and application of a novel micro-electromechanical device coupled to a confocal Raman microscope that enables in situ molecular investigations of micro-fibers under uniaxial tensile load. This device allows for the mechanical study of micro-fibers with diameters in the range between 10 and 100μm and lengths of several hundred micrometers. By exerting forces in ...
متن کامل