The RNA polymerase II Rpb4/7 subcomplex regulates cellular lifespan through an mRNA decay process.

نویسندگان

  • Ruxin Duan
  • Byung-Ho Rhie
  • Hong-Yeoul Ryu
  • Seong Hoon Ahn
چکیده

In budding yeast, a highly conserved heterodimeric protein complex that is composed of the Rpb4 and Rpb7 proteins within RNA polymerase II shuttles between the nucleus and cytoplasm where it coordinates various steps of gene expression by associating with mRNAs. Although distinct stages of gene expression potentially contribute to the regulation of cellular lifespan, little is known about the underlying mechanisms. Here, we addressed the role of the dissociable Rpb4/7 heterodimeric protein complex in the regulation of replicative lifespan during various stages of gene expression in the yeast Saccharomyces cerevisiae. We observed that the loss of Rpb4 resulted in a shortened lifespan. In contrast, we found that defects in the dissociation of Rpb4/7 from the RNA polymerase core complex and in translation initiation steps affected by Rpb4/7 did not impact lifespan. Tandem affinity purification experiments demonstrated that Rpb7 physically associates with Tpk2 and Pat1, which are both implicated in mRNA degradation. Consistent with this data, the loss of the mRNA decay regulators Pat1 and Dhh1 reduced the cellular lifespan. In summary, our findings further reinforce the pivotal role of Rpb4/7 in the coordination of distinct steps of gene expression and suggest that among the many stages of gene expression, mRNA decay is a critical process that is required for normal replicative lifespan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-associated RNA polymerase II includes the dissociable Rpb4/7 subcomplex.

Yeast RNA polymerase (Pol) II consists of a 10-subunit core enzyme and the Rpb4/7 subcomplex, which is dispensable for catalytic activity and dissociates in vitro. To investigate whether Rpb4/7 is an integral part of DNA-associated Pol II in vivo, we used chromatin immunoprecipitation coupled to high resolution tiling microarray analysis. We show that the genome-wide occupancy profiles for Rpb7...

متن کامل

RNA Polymerase II Subunits Link Transcription and mRNA Decay to Translation

Little is known about crosstalk between the eukaryotic transcription and translation machineries that operate in different cell compartments. The yeast proteins Rpb4p and Rpb7p represent one such link as they form a heterodimer that shuttles between the nucleus, where it functions in transcription, and the cytoplasm, where it functions in the major mRNA decay pathways. Here we show that the Rpb...

متن کامل

Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation

The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy t...

متن کامل

Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair

Spt5, a transcription elongation factor, and Rpb4, a subunit of RNA polymerase II (RNAP II) that forms a subcomplex with Rpb7, play important roles in transcription elongation and repression of transcription coupled DNA repair (TCR) in eukaryotic cells. How Spt5 physically interacts with RNAP II, and if and/or how Spt5 and Rpb4/7 coordinate to achieve the distinctive functions have been enigmat...

متن کامل

Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis

Biogenesis of messenger RNA is critically influenced by the phosphorylation state of the carboxy-terminal domain (CTD) in the largest RNA polymerase II (RNAPII) subunit. Several kinases and phosphatases are required to maintain proper CTD phosphorylation levels and, additionally, several other proteins modulate them, including Rpb4/7 and Sub1. The Rpb4/7 heterodimer, constituting the RNAPII sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره   شماره 

صفحات  -

تاریخ انتشار 2013