MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem
نویسندگان
چکیده
This paper presents a newmultiobjective genetic algorithm based on the Tchebycheff scalarizing function, which aims to generate a good approximation of the nondominated solution set of the multiobjective problem. The algorithm performs several stages, each one intended for searching potentially nondominated solutions in a different part of the Pareto front. Pre-defined weight vectors act as pivots to define the weighted-Tchebycheff scalarizing functions used in each stage. Therefore, each stage focuses the search on a specific region, leading to an iterative approximation of the entire nondominated set. This algorithm, calledMOTGA (Multiple objectiveTchebycheff basedGeneticAlgorithm) has been designed to themultiobjective multidimensional 0/1 knapsack problem, forwhich a dedicated routine to repair infeasible solutionswas implemented.Computational results are presented and compared with the outcomes of other evolutionary algorithms. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
A Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملA Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems
In recent studies on evolutionary multiobjective optimization, MOEA/D has been frequently used due to its simplicity, high computational efficiency, and high search ability. A multiobjective problem in MOEA/D is decomposed into a number of single-objective problems, which are defined by a single scalarizing function with evenly specified weight vectors. The number of the single-objective proble...
متن کاملA Portfolio Optimization Approach to Selection in Multiobjective Evolutionary Algorithms
In this work, a new approach to selection in multiobjective evolutionary algorithms (MOEAs) is proposed. It is based on the portfolio selection problem, which is well known in financial management. The idea of optimizing a portfolio of investments according to both expected return and risk is transferred to evolutionary selection, and fitness assignment is reinterpreted as the allocation of cap...
متن کاملA Practical Case of the Multiobjective Knapsack Problem: Design, Modelling, Tests and Analysis
In this paper, we present a practical case of the multiobjective knapsack problem which concerns the elaboration of the optimal action plan in the social and medico-social sector. We provide a description and a formal model of the problem as well as some preliminary computational results. We perform an empirical analysis of the behavior of three metaheuristic approaches: a fast and elitist mult...
متن کاملMEMOTS: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization
We present in this paper a new multiobjective memetic algorithm scheme called MEMOX. In current multiobjective memetic algorithms, the parents used for recombination are randomly selected. We improve this approach by using a dynamic hypergrid which allows to select a parent located in a region of minimal density. The second parent selected is a solution close, in the objective space, to the fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 34 شماره
صفحات -
تاریخ انتشار 2007