Cylindrical Algebraic Decomposition in the RegularChains Library
نویسندگان
چکیده
Cylindrical algebraic decomposition (CAD) is a fundamental tool in computational real algebraic geometry and has been implemented in several software. While existing implementations are all based on Collins’ projection-lifting scheme and its subsequent ameliorations, the implementation of CAD in the RegularChains library is based on triangular decomposition of polynomial systems and real root isolation of regular chains. The function in the RegularChains library for computing CAD is called CylindricalAlgebraicDecompose. In this paper, we illustrate by examples the functionality, the underlying theory and algorithm, as well the implementation techniques of CylindricalAlgebraicDecompose. An application of it is also provided.
منابع مشابه
Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains
A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by pol...
متن کاملUsing the Regular Chains Library to Build Cylindrical Algebraic Decompositions by Projecting and Lifting
Cylindrical algebraic decomposition (CAD) is an important tool, both for quantifier elimination over the reals and a range of other applications. Traditionally, a CAD is built through a process of projection and lifting to move the problem within Euclidean spaces of changing dimension. Recently, an alternative approach which first decomposes complex space using triangular decomposition before r...
متن کاملReal Quantifier Elimination in the RegularChains Library
Quantifier elimination (QE) over real closed fields has found numerous applications. Cylindrical algebraic decomposition (CAD) is one of the main tools for handling quantifier elimination of nonlinear input formulas. Despite of its worst case doubly exponential complexity, CAD-based quantifier elimination remains interesting for handling general quantified formulas and producing simple quantifi...
متن کاملSolving Parametric Polynomial Systems by RealComprehensiveTriangularize
In the authors’ previous work, the concept of comprehensive triangular decomposition of parametric semi-algebraic systems (RCTD for short) was introduced. For a given parametric semi-algebraic system, say S, an RCTD partitions the parametric space into disjoint semialgebraic sets, above each of which the real solutions of S are described by a finite family of triangular systems. Such a decompos...
متن کاملChoosing a Variable Ordering for Truth-Table Invariant Cylindrical Algebraic Decomposition by Incremental Triangular Decomposition
Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a ...
متن کامل