Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda
نویسندگان
چکیده
Childhood anemia is among the most significant health problems faced by public health departments in developing countries. This study aims at assessing the determinants and possible spatial effects associated with childhood anemia in Rwanda. The 2014/2015 Rwanda Demographic and Health Survey (RDHS) data was used. The analysis was done using the structured spatial additive quantile regression model. The findings of this study revealed that the child's age; the duration of breastfeeding; gender of the child; the nutritional status of the child (whether underweight and/or wasting); whether the child had a fever; had a cough in the two weeks prior to the survey or not; whether the child received vitamin A supplementation in the six weeks before the survey or not; the household wealth index; literacy of the mother; mother's anemia status; mother's age at the birth are all significant factors associated with childhood anemia in Rwanda. Furthermore, significant structured spatial location effects on childhood anemia was found.
منابع مشابه
Analysis of Childhood Stunting in Malawi Using Bayesian Structured Additive Quantile Regression Model
Analyses of childhood stunting have mainly used mean regression yet modeling using quantile regression is more appropriate than using mean regression in that the former provides flexibility to analyze the determinants of stunting corresponding to quantiles of interest whereas the latter allows only analyzing the determinants of mean stunting. Bayesian structured additive quantile regression mod...
متن کاملBoosting structured additive quantile regression for longitudinal childhood obesity data.
Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-f...
متن کاملIdentifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
Ordinary linear and generalized linear regression models relate the mean of a response variable to a linear combination of covariate effects and, as a consequence, focus on average properties of the response. Analyzing childhood malnutrition in developing or transition countries based on such a regression model implies that the estimated effects describe the average nutritional status. However,...
متن کاملUnderstanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression
BACKGROUND Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. OBJECTIVE We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear...
متن کاملFinite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study
Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...
متن کامل