Invariance principle, multifractional Gaussian processes and long-range dependence

نویسنده

  • Renaud Marty
چکیده

This paper is devoted to establish an invariance principle where the limit process is a multifractional Gaussian process with a multifractional function which takes its values in (1/2,1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional Brownian motion. Résumé. Ce papier a pour but d’établir un principe d’invariance dont le processus limite est gaussien et multifractionnaire avec une fonction de Hurst à valeurs dans (1/2,1). Des propriétés telles que la régularité et l’autosimilarité locale de ce processus sont étudiées. De plus, le processus limite est comparé au mouvement brownien multifractionnaire. AMS 2000 subject classifications. 60F17; 60G15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Hermite Polynomials to Multifractional Processes

We establish an invariance principle where the limit process is a Hermite-type process. We also prove that this limit process is multifractional. Our main result is a generalization of results from [6] and [11] to a multifractional setting. It also generalizes the main result of [3] to a non-Gaussian framework.

متن کامل

Identifying the multifractional function of a Gaussian process

Gaussian processes that are multifractional are studied in this paper. By multifractional processes we mean that they behave locally like a fractional Brownian motion, but the fractional index is no more a constant: it is a function. We introduce estimators of this multifractional function based on discrete observations of one sample path of the process and we study their asymptotical behaviour...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Integrated Fractional White Noise as an Alternative to Multifractional Brownian Motion

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the importa...

متن کامل

Linear multifractional multistable motion: LePage series representation and modulus of continuity

In this paper, we obtain an upper bound of the modulus of continuity of linear multifractional multistable random motions. Such processes are generalizations of linear multifractional α-stable motions for which the stability index α is also allowed to vary in time. In the case of linear multifractional α-stable motions, we improve the recent result of [2]. The main idea is to consider some cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006