A general framework for unsupervised processing of structured data

نویسندگان

  • Barbara Hammer
  • Alessio Micheli
  • Alessandro Sperduti
چکیده

Self-organization constitutes an important paradigm in machine learning with successful applications e.g. in dataand web-mining. Most approaches, however, have been proposed for processing data contained in a fixed and finite dimensional vector space. In this article, we will focus on extensions to more general data structures like sequences and tree structures. Various modifications of the standard self-organizing map (SOM) to sequences or tree structures have been proposed in the literature some of which are the temporal Kohonen map, the recursive SOM, and SOM for structured data. These methods enhance the standard SOM by utilizing recursive connections. We define a general recursive dynamic in this article which provides recursive processing of complex data structures by recursive computation of internal representations for the given context. The above mentioned mechanisms of SOMs for structures are special cases of the proposed general dynamic. Furthermore, the dynamic covers the supervised case of recurrent and recursive networks. The general framework offers a uniform notation for training mechanisms such as Hebbian learning. Moreover, the transfer of computational alternatives such as vector quantization or the neural gas algorithm to structure processing networks can be easily achieved. One can formulate general cost functions corresponding to vector quantization, neural gas, and a modification of SOM. The cost functions can be compared to Hebbian learning which can be interpreted as an approximation of a stochastic gradient descent. For comparison, we derive the exact gradients for general cost functions. Preprint submitted to Elsevier Science 27 May 2003

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Organizing Maps for Time Series

We review a recent extension of the self-organizing map (SOM) for temporal structures with a simple recurrent dynamics leading to sparse representations, which allows an efficient training and a combination with arbitrary lattice structures. We discuss its practical applicability and its theoretical properties. Afterwards, we put the approach into a general framework of recurrent unsupervised m...

متن کامل

Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units

In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

A Framework for Compassion-Based Teaching

To present a framework for compassionate teaching, the views of teachers and students on the topic were sought. These informants were chosen from among their corresponding populations in Tehran, using the snowball and mixed methods. Semi-structured interviews were used to gather the needed data. To analyze the data open coding and descriptive categorization were utilized. Results show that from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002