Fuzzy and SVM based Power System Stabilizer for

نویسندگان

  • Bhavans Shah
  • Sardar Patel
  • Prashant Chaudhari
چکیده

Power system stabilizers (PSSs) are used to enhance the damping during low frequency oscillations. Artificial intelligence techniques provide one alternative for stability enhancement and speed deviation (Δw). In this paper we have applied Fuzzy based and Support Vector Machine (SVM) based approach to PSS for Single Machine Infinite Bus (SMIB) System .The proposed method using SVM techniques achieves better improvement than Fuzzy Based power system stabilizer with reference to Conventional PSS with same condition applied. In the present paper, Fuzzy based PSS Simulink model using triangular membership function (FPSS) and novel approach for on-line adaptive tuning of Support Vector Machine based Power System Stabilizer (SVMPSS) using sigmoid kernel function is presented. The simulation results of the proposed SVMPSS and FPSS are compared to those of conventional stabilizers in for a SMIB system. The results show the Robustness of the proposed SVMPSS and its ability to enhance system damping over a wide range of operating conditions and system parameter variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

Optimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO ‎Algorithm

In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...

متن کامل

Genetic Algorithm Based Fuzzy Logic Power System Stabilizers in Multimachine Power System

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015