Highly Parallel Transport Recordings on a Membrane-on-Nanopore Chip at Single Molecule Resolution
نویسندگان
چکیده
Membrane proteins are prime drug targets as they control the transit of information, ions, and solutes across membranes. Here, we present a membrane-on-nanopore platform to analyze nonelectrogenic channels and transporters that are typically not accessible by electrophysiological methods in a multiplexed manner. The silicon chip contains 250,000 femtoliter cavities, closed by a silicon dioxide top layer with defined nanopores. Lipid vesicles containing membrane proteins of interest are spread onto the nanopore-chip surface. Transport events of ligand-gated channels were recorded at single-molecule resolution by high-parallel fluorescence decoding.
منابع مشابه
Multiplexed parallel single transport recordings on nanopore arrays.
We introduce a nanofabricated silicon chip for massively multiplexed analysis of membrane channels and transporters in suspended lipid membranes that does not require any surface modification or organic solvent. Transport processes through single membrane complexes are monitored by fluorescence. The chip consists of an array of well-defined nanopores, addressing an individual pyramidal back-ref...
متن کاملA single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution.
The ability to monitor DNA polymerase activity with single-nucleotide resolution has been the cornerstone of a number of advanced single-molecule DNA sequencing concepts. Toward this goal, we report the first observation of the base-by-base DNA polymerase activity with single-base resolution at the single-molecule level. We describe the design and characterization of a supramolecular nanopore d...
متن کاملSingle-molecule observation of protein adsorption onto an inorganic surface.
Understanding the interactions between silicon-based materials and proteins from the bloodstream is of key importance in a myriad of realms, such as the design of nanofluidic devices and functional biomaterials, biosensors, and biomedical molecular diagnosis. By using nanopores fabricated in 20 nm-thin silicon nitride membranes and highly sensitive electrical recordings, we show single-molecule...
متن کاملMeasurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution.
Despite the potential for nanopores to be a platform for high-bandwidth study of single-molecule systems, ionic current measurements through nanopores have been limited in their temporal resolution by noise arising from poorly optimized measurement electronics and large parasitic capacitances in the nanopore membranes. Here, we present a complementary metal-oxide-semiconductor (CMOS) nanopore (...
متن کاملSingle ion channel recordings with CMOS-anchored lipid membranes.
We present single-ion-channel recordings performed with biomimetic lipid membranes which are directly attached to the surface of a complementary metal-oxide-semiconductor (CMOS) preamplifier chip. With this system we resolve single-channel currents from several types of bacterial ion channels, including fluctuations of a single alamethicin channel at a bandwidth of 1 MHz which represent the fas...
متن کامل