A Dirac-type theorem for Hamilton Berge cycles in random hypergraphs

نویسندگان

  • Dennis Clemens
  • Julia Ehrenmüller
  • Yury Person
چکیده

A Hamilton Berge cycle of a hypergraph on n vertices is an alternating sequence (v1, e1, v2, . . . , vn, en) of distinct vertices v1, . . . , vn and distinct hyperedges e1, . . . , en such that {v1, vn} ⊆ en and {vi, vi+1} ⊆ ei for every i ∈ [n − 1]. We prove a Dirac-type theorem for Hamilton Berge cycles in random r-uniform hypergraphs by showing that for every integer r ≥ 3 there exists k = k(r) such that for every γ > 0 and p ≥ log (n) nr−1 asymptotically almost surely every spanning subhypergraph H ⊆ H(r)(n, p) with minimum vertex degree δ1(H) ≥ ( 1 2r−1 + γ ) p ( n−1 r−1 ) contains a Hamilton Berge cycle. The minimum degree condition is asymptotically tight and the bound on p is optimal up to possibly the logarithmic factor. As a corollary this gives a new upper bound on the threshold of H(r)(n, p) with respect to Berge Hamiltonicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances on Dirac-type Problems for Hypergraphs

A fundamental question in graph theory is to establish conditions that ensure a graph contains certain spanning subgraphs. Two well-known examples are Tutte’s theorem on perfect matchings and Dirac’s theorem on Hamilton cycles. Generalizations of Dirac’s theorem, and related matching and packing problems for hypergraphs, have received much attention in recent years. New tools such as the absorb...

متن کامل

Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....

متن کامل

Decompositions of complete uniform hypergraphs into Hamilton Berge cycles

In 1973 Bermond, Germa, Heydemann and Sotteau conjectured that if n divides ( n k ) , then the complete k-uniform hypergraph on n vertices has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of an alternating sequence v1, e1, v2, . . . , vn, en of distinct vertices vi and distinct edges ei so that each ei contains vi and vi+1. So the divisibility condition is clearly nec...

متن کامل

The Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree

We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n2−C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpiński, Ruciński and ...

متن کامل

Hypergraph Extensions of the Erdos-Gallai Theorem

Our goal is to extend the following result of Erd˝ os and Gallai for hypergraphs: Theorem 1 (Erd˝ os-Gallai [1]) Let G be a graph on n vertices containing no path of length k. Then e(G) ≤ 1 2 (k − 1)n. Equality holds iff G is the disjoint union of complete graphs on k vertices. We consider several generalizations of this theorem for hypergraphs. This is due to the fact that there are several po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016