In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model.

نویسندگان

  • Shuaijun Jia
  • Ting Zhang
  • Zhuo Xiong
  • Weimin Pan
  • Jian Liu
  • Wei Sun
چکیده

Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold

Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect.   Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each.   Procedures- Mesenchymal stem cells were isolated from h...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Using Xenogenic (Calf Foetal) Osteochondral Transplantation for Articular Cartilage Defect in Rabbit Model

Background: The destruction of articular cartilage is the major cause of articular problems. The articular cartilage has little repair postertial due to lack of perichondrium and direct blood circulation. It is, therefore important to consider this phenomena in surgical treatments. One of the articular cartilage reconstructive surgeries is using Osteo-Chondral graft. The main purpose of this re...

متن کامل

Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model

Functional reconstruction of large osteochondral defects is always a major challenge in articular surgery. Some studies have reported the feasibility of repairing articular osteochondral defects using bone marrow stromal cells (BMSCs) and biodegradable scaffolds. However, no significant breakthroughs have been achieved in clinical translation due to the instability of in vivo cartilage regenera...

متن کامل

Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration.

The aims of this study were to (1) determine whether platelet-rich plasma (PRP) could be prepared as a bioactive scaffold capable of endogenous growth factor release for cartilage repair; (2) compare the chondrogenic differentiation ability of mesenchymal stem cells (MSCs) from bone marrow (BMSC) and from adipose (ADSC) seeded within the PRP scaffold; and (3) test the efficacy of ADSC-PRP const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 2015