Stiffness Predictions for Unidirectional Short-Fiber Composites: Review and Evaluation

نویسندگان

  • Charles L. Tucker
  • Erwin Liang
چکیده

Micromechanics models for the stiffness of aligned short-fiber composites are reviewed and evaluated. These include the dilute model based on Eshelby’s equivalent inclusion, the self-consistent model for finite-length fibers, Mori-Tanaka type models, bounding models, the Halpin-Tsai equation and its extensions, and shear lag models. Several models are found to be equivalent to the Mori-Tanaka approach, which is also equivalent to the generalization of the Hashin-Shtrikman-Walpole lower bound. The models are evaluated by comparison to finite element calculations using periodic arrays of fibers, and to Ingber and Papathanasiou’s boundary element results for random arrays of aligned fibers. The finite element calculations provide E11, E22, 12, and 23 for a range of fiber aspect ratios and packing geometries, with other properties typical of injection-molded thermoplastic matrix composites. The HalpinTsai equations give reasonable estimates for stiffness, but the best predictions come from the Mori-Tanaka model and the bound interpolation model of Lielens et al. To whom correspondence should be addressed

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites

Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...

متن کامل

Stiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function

One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...

متن کامل

Estimation of Lamina Stiffness and Strength of Quadriaxial Non-Crimp Fabric Composites Based on Semi-Laminar Considerations

Quadriaxial non-crimp fabric (QNCF) composites are increasingly being used as primary structural materials in aircraft and automotive applications. Predicting the mechanical properties of QNCF lamina is more complicated compared with that of unidirectional (UD) composites, because of the knitting connection of different plies. In this study, to analyze the stiffness and strength of the QNCF com...

متن کامل

MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES

Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping pr...

متن کامل

An Energy-Based Model of Longitudinal Splitting in Unidirectional Fiber-Reinforced Composites

Unidirectional fiber-reinforced composites are often observed to fail in a longitudinal splitting mode in the fiber direction under far-field compressive loading with weak lateral confinement. An energy-based model is developed based on the principle of minimum potential energy and the evaluation of effective properties to obtain an analytical approximation to the critical stress for longitudin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998