Fluid shear stress impacts ovarian cancer cell viability, subcellular organization, and promotes genomic instability

نویسندگان

  • Alexandra R Hyler
  • Nicolaas C Baudoin
  • Megan S Brown
  • Mark A Stremler
  • Daniela Cimini
  • Rafael V Davalos
  • Eva M Schmelz
چکیده

Ovarian cancer cells are exposed to physical stress in the peritoneal cavity during both tumor growth and dissemination. Ascites build-up in metastatic ovarian cancer further increases the exposure to fluid shear stress. Here, we used a murine, in vitro ovarian cancer progression model in parallel with immortalized human cells to investigate how ovarian cancer cells of increasing aggressiveness respond to [Formula: see text] of fluid-induced shear stress. This biophysical stimulus significantly reduced cell viability in all cells exposed, independent of disease stage. Fluid shear stress induced spheroid formation and altered cytoskeleton organization in more tumorigenic cell lines. While benign ovarian cells appeared to survive in higher numbers under the influence of fluid shear stress, they exhibited severe morphological changes and chromosomal instability. These results suggest that exposure of benign cells to low magnitude fluid shear stress can induce phenotypic changes that are associated with transformation and ovarian cancer progression. Moreover, exposure of tumorigenic cells to fluid shear stress enhanced anchorage-independent survival, suggesting a role in promoting invasion and metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid-Flow Induced Wall Shear Stress and Epithelial Ovarian Cancer Peritoneal Spreading

Epithelial ovarian cancer (EOC) is usually discovered after extensive metastasis have developed in the peritoneal cavity. The ovarian surface is exposed to peritoneal fluid pressures and shear forces due to the continuous peristaltic motions of the gastro-intestinal system, creating a mechanical micro-environment for the cells. An in vitro experimental model was developed to expose EOC cells to...

متن کامل

Dynamic Instability of Visco-SWCNTs Conveying Pulsating Fluid Based on Sinusoidal Surface Couple Stress Theory

In this study, a realistic model for dynamic instability of embedded single-walled nanotubes (SWCNTs) conveying pulsating fluid is presented considering the viscoelastic property of the nanotubes using Kelvin–Voigt model. SWCNTs are placed in longitudinal magnetic fields and modeled by sinusoidal shear deformation beam theory (SSDBT) as well as modified couple stress theory. The effect of slip ...

متن کامل

Fluid shear stress pre-conditioning promotes endothelial morphogenesis of embryonic stem cells within embryoid bodies.

Pluripotent embryonic stem cells (ESCs) are capable of differentiating into all mesoderm-derived cell lineages, including endothelial, hematopoietic, and cardiac cell types. Common strategies to direct mesoderm differentiation of ESCs rely on exposing the cells to a series of biochemical and biophysical cues at different stages of differentiation to promote maturation toward specific cell pheno...

متن کامل

TP53 mutation-mediated genomic instability induces the evolution of chemoresistance and recurrence in epithelial ovarian cancer

BACKGROUND Genomic instability caused by mutation of the checkpoint molecule TP53 may endow cancer cells with the ability to undergo genomic evolution to survive stress and treatment. We attempted to gain insight into the potential contribution of ovarian cancer genomic instability resulted from TP53 mutation to the aberrant expression of multidrug resistance gene MDR1. METHODS TP53 mutation ...

متن کامل

Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2.

PURPOSE Aurora kinase A (Aurora-A) is known to regulate genomic instability and tumorigenesis in multiple human cancers. The underlying mechanism, however, is not fully understood. We examined the molecular mechanism of Aurora-A regulation in human ovarian cancer. EXPERIMENTAL DESIGN Retrovirus-mediated small hairpin RNA (shRNA) was used to silence the expression of Aurora-A in the ovarian ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018