Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
نویسندگان
چکیده
This study investigated the impact of three prior distributions: matched, standard vague, and hierarchical in Bayesian estimation parameter recovery in two and one parameter models. Two Bayesian estimation methods were utilized: Markov chain Monte Carlo (MCMC) and the relatively new, Variational Bayesian (VB). Conditional (CML) and Marginal Maximum Likelihood (MML) estimates were used as baseline methods for comparison. Vague priors produced large errors or convergence issues and are not recommended. For both MCMC and VB, the hierarchical and matched priors showed the lowest root mean squared errors (RMSEs) for ability estimates; RMSEs of difficulty estimates were similar across estimation methods. For the standard errors (SEs), MCMC-hierarchical displayed the largest values across most conditions. SEs from the VB estimation were among the lowest in all but one case. Overall, VB-hierarchical, VB-matched, and MCMC-matched performed best. VB with hierarchical priors are recommended in terms of their accuracy, and cost and (subsequently) time effectiveness.
منابع مشابه
Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm
Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملEstimation of quantitative trait locus effects with epistasis by variational Bayes algorithms.
Bayesian hierarchical shrinkage methods have been widely used for quantitative trait locus mapping. From the computational perspective, the application of the Markov chain Monte Carlo (MCMC) method is not optimal for high-dimensional problems such as the ones arising in epistatic analysis. Maximum a posteriori (MAP) estimation can be a faster alternative, but it usually produces only point esti...
متن کاملBayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کامل