Inhibiting Cytochrome C Oxidase Leads to Alleviated Ischemia Reperfusion Injury

نویسندگان

  • Zhaoyun Yang
  • Zhongxin Duan
  • Tian Yu
  • Junmei Xu
  • Lei Liu
چکیده

BACKGROUND AND OBJECTIVES The overall purpose of this study was to investigate the role of cytochrome C oxidase (CcO) in preventing ischemia reperfusion-induced cardiac injury through gaseous signaling molecule pathways. MATERIALS AND METHODS We used CcO inhibitor, potassium cyanide (KCN) to mimic the pre-treatment of gaseous signaling molecules in a global ischemia/reperfusion (IR) injury model in rats. Intracellular reactive oxygen species (ROS) was determined by measuring mitochondrial H2O2 and mitochondrial complex activity. RESULTS KCN pre-treatment led to decreased infarction area after IR injury and improved cardiac function. KCN pre-treated group challenged with IR injury was associated with reduced ROS production through inhibition of activity and not downregulation of CcO expression. In addition, KCN pre-treatment was associated with enhanced expression and activity of mitochondrial antioxidase, suggesting the role of CcO in regulating IR injury through oxidative stress. CONCLUSION KCN pre-treatment reduced the severity of IR injury. The potential mechanism could be increased endogenous anti-oxidase activity and consequently, the enhanced clearance of ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin.

Ischemia and reperfusion result in mitochondrial dysfunction, with decreases in oxidative capacity, loss of cytochrome c, and generation of reactive oxygen species. During ischemia of the isolated perfused rabbit heart, subsarcolemmal mitochondria, located beneath the plasma membrane, sustain a loss of the phospholipid cardiolipin, with decreases in oxidative metabolism through cytochrome oxida...

متن کامل

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

The preventive effects of dexmedetomidine against intestinal ischemia-reperfusion injury in Wistar rats

Objective(s): Intestinal ischemia-reperfusion is a major problem, which may lead to multiorgan failure and death. The aim of this study was to evaluate the protective effects of dexmedetomidine on cell proliferation, antioxidant system, cell death, and structural integrity in intestinal injury induced by ischemia-reperfusion in rats. Materials and Methods: Animals were randomized into three gro...

متن کامل

Potential therapeutic effect of pomegranate seed oil on ovarian ischemia/reperfusion injury in rats

Objective(s): The aim of this study is to determine the therapeutic effects of pomegranate seed oil, which is a powerful antioxidant and anti-inflammatory agent, on ovarian-ischemia and reperfusion injury in rats.Materials and Methods: Fifty-six  female albino Wistar rats were divided into 7 equal groups. Group 1; Sham Operation, Group 2; Ischemia, Group 3; Ischemia + Reperfusion, Group 4; Isch...

متن کامل

Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance.

Reactive oxygen species (ROS), as superoxide and its metabolites, have important roles in vascular homeostasis as they are involved in various signaling processes. In many cardiovascular disease states, however, the release of ROS is increased. Uncontrolled ROS production leads to impaired endothelial function and consequently to vascular dysfunction. This review focuses on two clinical conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2017