An Inverse-Ackermann Type Lower Bound For Online Minimum Spanning Tree Verification
نویسنده
چکیده
Given a spanning tree T of some graph G, the problem of minimum spanning tree verification is to decide whether T = MST (G). A celebrated result of Komlós shows that this problem can be solved with a linear number of comparisons. Somewhat unexpectedly, MST verification turns out to be useful in actually computing minimum spanning trees from scratch. It is this application that has led some to wonder whether a more flexible version of MST verification could be used to derive a faster deterministic minimum spanning tree algorithm. In this paper we consider the online MST verification problem in which we are given a sequence of queries of the form “Is e in the MST of T∪{e}?”, where the tree T is fixed. We prove that there are no linear-time solutions to the online MST verification problem, and in particular, that answering m queries requires Ω(mα(m,n)) time, where α(m,n) is the inverse-Ackermann function and n is the size of the tree. On the other hand, we show that if the weights of T are permuted randomly there is a simple data structure that preprocesses the tree in expected linear time and answers queries in constant time.
منابع مشابه
An Inverse-Ackermann Style Lower Bound for the Online Minimum Spanning Tree Verification Problem
We consider the problem of preprocessing an edgeweighted tree in order to quickly answer queries of the following type: does a given edge belong in the minimum spanning tree of ? Whereas the offline minimum spanning tree verification problem admits a lovely linear time solution, we demonstrate an inherent inverseAckermann type tradeoff in the online MST verification problem. In particular, any ...
متن کاملAn Inverse-Ackermann Style Lower Bound for the Online Minimum Spanning Tree
We consider the problem of preprocessing an edgeweighted tree T in order to quickly answer queries of the following type: does a given edge e belong in the minimum spanning tree of T [ feg? Whereas the offline minimum spanning tree verification problem admits a lovely linear time solution, we demonstrate an inherent inverseAckermann type tradeoff in the online MST verification problem. In parti...
متن کاملSensitivity Analysis of Minimum Spanning Trees in Sub-inverse-Ackermann Time
We present a deterministic algorithm for computing the sensitivity of a minimum spanning tree (MST) or shortest path tree in O(m logα(m,n)) time, where α is the inverse-Ackermann function. This improves upon a long standing bound of O(mα(m,n)) established by Tarjan. Our algorithms are based on an efficient split-findmin data structure, which maintains a collection of sequences of weighted eleme...
متن کاملFinding Minimum Spanning Trees in O(m (m;n)) Time
We describe a deterministic minimum spanning tree algorithm running in time O(m (m; n)), where is a natural inverse of Ackermann's function and m and n are the number of edges and vertices, respectively. This improves upon the O(m (m; n) log (m; n)) bound established by Chazelle in 1997. A similar O(m (m; n))-time algorithm was discovered independently by Chazelle, predating the algorithm prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 26 شماره
صفحات -
تاریخ انتشار 2006