Coregulation of oxidized nicotinamide adenine dinucleotide (phosphate) transhydrogenase and glutamate dehydrogenase activities in enteric bacteria during nitrogen limitation.
نویسندگان
چکیده
The relationship between oxidized nicotinamide adenine dinucleotide (phosphate) [NAD(P)+] transhydrogenase (EC 1.6.1.1) and NAD(P)+ glutamate dehydrogenase in several enteric bacteria which differ slightly in their regulation of nitrogen metabolism was studied. Escherichia coli strain K-12 was grown on glucose and various concentrations of NH4Cl as the sole nitrogen source. In the range of 0.5 to 20 mM NH4Cl, the energy-independent transhydrogenase increased two to threefold. Comparable changes occurred in NAD(P)+-linked glutamate dehydrogenase. NH4Cl concentrations of 20 to 60 mM resulted in relatively constant specific activities for both enzymes. Higher exogenous NH4Cl, however, led to a decline in both activities. Isocitrate dehydrogenase, another potential source of cellular NADPH, was insensitive to NH4Cl limitation. Similar studies in the presence of glutamate and different exogenous NH4Cl concentrations again showed concerted effects on both enzymes. Growth on glutamate as the sole nitrogen source led to severe repression of both transhydrogenase and glutamate dehydrogenase. In Salmonella typhimurium, both enzymes were unaffected by limiting NH4Cl or growth on glutamate as the sole nitrogen source. Both were, however, repressed by growth on aspartate, a potential source of cellular glutamate. Coordinate changes in glutamate dehydrogenase and transhydrogenase were also evident in Klebsiella aerogenes, particularly under conditions in which glutamate dehydrogenase was regulated inversely to glutamate synthetase. Coordinate changes in glutamate dehydrogenase and transhydrogenase in enteric bacteria are discussed in terms of the possible involvement of the latter enzyme as a direct source of NADPH in the ammonia assimilation system.
منابع مشابه
Morphology-associated expression nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Mucorracemosus.
The in vivo regulation of glutamate dehydrogenase (GDH) was studied in Mucor racemosus as a function of nutritional conditions and morphological state. Both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP)-dependent GDH activities were found. The effect of carbon and nitrogen source on the specific activity of the NAD-dependent GDH suggests that its...
متن کاملPurification, properties, and regulation of glutamic dehydrogenase of Bacillus licheniformis.
Cell-free extracts of Bacillus licheniformis and B. cereus were found to contain high specific activities of nicotinamide adenine dinucleotide phosphate (NADP)-dependent-l-glutamate dehydrogenase [EC 1.4.1.4; l-glutamate: NADP oxidoreductase (deaminating)]. Maximum specific activities were found in extracts of cells during the late exponential phase of growth when ammonium ion served as the sol...
متن کاملRegulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae.
Saccharomyces cerevisiae contains two distinct l-glutamate dehydrogenases. These enzymes are affected in a reciprocal fashion by growth on ammonia or dicarboxylic amino acids as the nitrogen source. The specific activity of the nicotinamide adenine dinucleotide phosphate (NADP) (anabolic) enzyme is highest in ammonia-grown cells and is reduced in cells grown on glutamate or aspartate. Conversel...
متن کاملInhibition of amino acid transport by ammonium ion in Saccharomyces cerevisiae.
The rate of transport of L-amino acids by Saccharomyces cerevisiae epsilon 1278b increased with time in response to nitrogen starvation. This increase could be prevented by the addition of ammonium sulfate or cycloheximide. A slow time-dependent loss of transport activity was observed when ammonium sulfate (or ammonium sulfate plus cycloheximide) was added to cells after 3 h of nitrogen starvat...
متن کاملLipoamide dehydrogenase from human liver.
Lipoamide dehydrogenase (reduced nicotinamide adenine dinucleotide :lipoamide oxidoreductase, EC 1.6.4.3) has been isolated from acid-precipitated human liver particles in a highly purified state by a freezing and thawing technique instead of the heat treatment used by other workers. The enzyme was found to have a molecular weight of 138,000, and to contain 2 moles of flavin adenine dinucleotid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 146 3 شماره
صفحات -
تاریخ انتشار 1981