Electricity production from cellulose in a microbial fuel cell using a defined binary culture.
نویسندگان
چکیده
Microbial fuel cells (MFCs) convert biodegradable materials into electricity, potentially contributing to an array of renewable energy production strategies tailored for specific applications. Since there are no known microorganisms that can both metabolize cellulose and transfer electrons to solid extracellular substrates, the conversion of cellulosic biomass to electricity requires a syntrophic microbial community that uses an insoluble electron donor (cellulose) and electron acceptor (anode). Electricity was generated from cellulose in an MFC using a defined coculture of the cellulolytic fermenter Clostridium cellulolyticum and the electrochemically active Geobacter sulfurreducens. In fed-batch tests using two-chamber MFCs with ferricyanide as the catholyte, the coculture achieved maximum power densities of 143 mW/ m2 (anode area) and 59.2 mW/m2 from 1 g/L carboxymethyl cellulose (CMC) and MN301 cellulose, respectively. Neither pure culture alone produced electricity from these substrates. The coculture increased CMC degradation from 42% to 64% compared to a pure C. cellulolyticum culture. COD removal using CMC and MN301 was 38 and 27%, respectively, with corresponding Coulombic efficiencies of 47 and 39%. Hydrogen, acetate, and ethanol were the main residual metabolites of the binary culture. Cellulose conversion to electricity was also demonstrated using an uncharacterized mixed culture from activated sludge with an aerobic aqueous cathode.
منابع مشابه
Pollution reduction and electricity production from dairy industry wastewater with microbial fuel cell
Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...
متن کاملSimultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from many different biodegradable substrates. When cellulose is used as the substrate, electricity generation requires a microbial community with both cellulolytic and exoelectrogenic activities. Cellulose degradation with electricity production by a pure culture has not been previously demonstrated without additio...
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملSulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell
The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 41 13 شماره
صفحات -
تاریخ انتشار 2007