Radical ion states of platinum acetylide oligomers.
نویسندگان
چکیده
The ion radicals of two series of platinum acetylide oligomers have been subjected to study by electrochemical and pulse radiolysis/transient absorption methods. One series of oligomers, Ptn, has the general structure Ph-C[triple bond]C-[Pt(PBu3)2-C[triple bond]C-(1,4-Ph)-C[triple bond]C-]n-Pt(PBu3)2-C[triple bond]C-Ph (where x=0-4, Ph=phenyl and 1,4-Ph=1,4-phenylene). The second series of oligomers, Pt4Tn, contain a thiophene oligomer core, -C[triple bond]C-(2,5-Th)n-C[triple bond]C- (where n=1-3 and 2,5-Th=2,5-thienylene), capped on both ends with -Pt(PBu3)2-C[triple bond]C-(1,4-Ph)-C[triple bond]C-Pt(PBu3)2-C[triple bond]C-Ph segments. Electrochemical studies reveal that all of the oligomers feature reversible or quasi-reversible one-electron oxidation at potentials less than 1 V versus SCE. These oxidations are assigned to the formation of radical cations on the platinum acetylide chains. For the longer oligomers multiple, reversible one-electron waves are observed at potentials less than 1 V, indicating that multiple positive polarons can be produced on the oligomers. Pulse-radiolysis/transient absorption spectroscopy has been used to study the spectra and dynamics of the cation and anion radical states of the oligomers in dichloroethane and tetrahydrofuran solutions, respectively. All of the ion radicals exhibit two allowed absorption bands: one in the visible region and the second in the near-infrared region. The ion radical spectra shift with oligomer length, suggesting that the polarons are delocalized to some extent on the platinum acetylide chains. Analysis of the electrochemical and pulse radiolysis data combined with the density functional theory calculations on model ion radicals provides insight into the electronic structure of the positive and negative ion radical states of the oligomers. A key conclusion of the work is that the polaron states are concentrated on relatively short oligomer segments.
منابع مشابه
Geometric influence on intramolecular photoinduced electron transfer in platinum(II) acetylide-linked donor-acceptor assemblies.
A new donor-acceptor system, in which the electron donor triphenylamine (TPA) and the electron acceptor C60 are bridged through a cis- or trans-platinum(II) acetylide spacer have been prepared. Ground-state studies were conducted using electrochemistry and UV/Vis spectroscopy. Fluorescence studies suggested that charge transfer is the deactivation mechanism for the singlet excited state, and th...
متن کاملNegative polaron and triplet exciton diffusion in organometallic "molecular wires".
The dynamics of negative polaron and triplet exciton transport within a series of monodisperse platinum (Pt) acetylide oligomers is reported. The oligomers consist of Pt-acetylide repeats, [PtL(2)-C≡C-Ph-C≡C-](n) (where L = PBu(3) and Ph = 1,4-phenylene, n = 2, 3, 6, and 10), capped with naphthalene diimide (NDI) end groups. The Pt-acetylide segments are electro- and photoactive, and they serve...
متن کاملSynthesis and photophysical properties of platinum-acetylide copolymers with thiophene, selenophene and tellurophene.
A series of platinum-acetylide copolymers with thiophene, selenophene, and tellurophene have been synthesized and studied. Photoluminescence experiments show that polymers undergo intersystem crossing to triplet states, leading to phosphorescence. The observed phosphorescence decreases in intensity moving down the group. DFT calculations are used to further understand the optical properties.
متن کاملPhotoinduced charge separation in platinum acetylide oligomers.
The series of three donor-spacer-acceptor complexes, DPAF-Ptn-NDI, has been synthesized and characterized using time-resolved absorption spectroscopy. In these complexes, the donor is a (diphenylamino)-2,7-fluorenylene (DPAF) unit, the acceptor is a naphthalene diimide (NDI), and the spacers are a series of platinum acetylides of varying lengths, [-Pt(PBu(3))(2)-C≡C-Ph-C≡C-](n) (where Bu = n-bu...
متن کاملCooperative self-assembly of platinum(II) acetylide complexes.
Rod-like platinum(II) acetylide complexes have been demonstrated to form one-dimensional helical supramolecular polymers by the cooperative growth mechanism, leading to supramolecular gels by bundling single fibrils into entangled networks.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 37 شماره
صفحات -
تاریخ انتشار 2007