On the Hamiltonicity Gap and doubly stochastic matrices
نویسندگان
چکیده
We consider the Hamiltonian cycle problem embedded in singularly perturbed (controlled) Markov chains. We also consider a functional on the space of stationary policies of the process that consists of the (1,1)-entry of the fundamental matrices of the Markov chains induced by these policies. We focus on the subset of these policies that induce doubly stochastic probability transition matrices which we refer to as the “doubly stochastic policies”. We show that when the perturbation parameter, ε, is sufficiently small, the minimum of this functional over the space of the doubly stochastic policies is attained at a Hamiltonian cycle, provided that the graph is Hamiltonian. We also show that when the graph is non-Hamiltonian, the above minimum is strictly greater than that in a Hamiltonian case. We call the size of this difference the “Hamiltonicity Gap” and derive a conservative lower bound for this gap. Our results imply that the Hamiltonian cycle problem is equivalent to the problem of minimizing the variance of the first hitting time of the home node, over doubly stochastic policies.
منابع مشابه
Some results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملDirected graphs, Hamiltonicity and doubly stochastic matrices
We consider the Hamiltonian cycle problem embedded in singularly perturbed (controlled)Markov chains. We also consider a functional on the space of stationary policies of the process that consists of the (1,1)-entry of the fundamental matrices of the Markov chains induced by the same policies. In particular, we focus on the subset of these policies that induce doubly stochastic probability tran...
متن کاملSpectral gap of doubly stochastic matrices generated from CUE
To a unitary matrix U we associate a doubly stochastic matrix M by taking the modulus squared of each element of U. To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M, we study the limiting distribution of the spectral gap of M when U is taken from the Circular Unitary Ensemble and the dimension N of U is taken to infin...
متن کاملSpectral gap of doubly stochastic matrices generated from equidistributed unitary matrices
To a unitary matrix U we associate a doubly stochastic matrix M by taking the squared modulus of each element of U . To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M , we study the limiting distribution of the spectral gap of M when U is taken from the circular unitary ensemble and the dimension N of U is taken to inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 34 شماره
صفحات -
تاریخ انتشار 2009