Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales
نویسندگان
چکیده
We consider a coupled system of two singularly perturbed reaction-diffusion equations, with two small parameters 0 < ε ≤ μ ≤ 1, each multiplying the highest derivative in the equations. The presence of these parameters causes the solution(s) to have boundary layers which overlap and interact, based on the relative size of ε and μ. We show how one can construct full asymptotic expansions together with error bounds that cover the complete range 0 < ε ≤ μ ≤ 1. For the present case of analytic input data, we present derivative growth estimates for the terms of the asymptotic expansion that are explicit in the perturbation parameters and the expansion order.
منابع مشابه
Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales J. M. Melenk, C. Xenophontos & L. Oberbroeckling
We consider a coupled system of two singularly perturbed reactiondiffusion equations, with two small parameters 0 < ε ≤ μ ≤ 1, each multiplying the highest derivative in the equations. The presence of these parameters causes the solution(s) to have boundary layers which overlap and interact, based on the relative size of ε and μ. We show how one can construct full asymptotic expansions together...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملRobust exponential convergence of hp-FEM for singularly perturbed reaction diffusion systems with multiple scales
We consider the approximation of a coupled system of two singularly perturbed reactiondiffusion equations, with the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. We pr...
متن کاملNumerical method for a system of second order singularly perturbed turning point problems
In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...
متن کاملRobust exponential convergence of hp-FEM for singularly perturbed reaction diffusion systems with multiple scales
We consider a coupled system of two singularly perturbed reaction-diffusion equations in one dimension. Associated with the two singular perturbation parameters 0 < ε μ 1, are boundary layers of length scales O(ε) and O(μ). We propose and analyze an hp finite element scheme which includes elements of size O(εp) and O(μp) near the boundary, where p is the degree of the approximating polynomials....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 39 شماره
صفحات -
تاریخ انتشار 2013