High-resolution 3-D imaging of living cells in suspension using confocal axial tomography.
نویسندگان
چکیده
Conventional flow cytometry (FC) methods report optical signals integrated from individual cells at throughput rates as high as thousands of cells per second. This is further combined with the powerful utility to subsequently sort and/or recover the cells of interest. However, these methods cannot extract spatial information. This limitation has prompted efforts by some commercial manufacturers to produce state-of-the-art commercial flow cytometry systems allowing fluorescence images to be recorded by an imaging detector. Nonetheless, there remains an immediate and growing need for technologies facilitating spatial analysis of fluorescent signals from cells maintained in flow suspension. Here, we report a novel methodological approach to this problem that combines micro-fluidic flow, and microelectrode dielectric-field control to manipulate, immobilize and image individual cells in suspension. The method also offers unique possibilities for imaging studies on cells in suspension. In particular, we report the system's immediate utility for confocal "axial tomography" using micro-rotation imaging and show that it greatly enhances 3-D optical resolution compared with conventional light reconstruction (deconvolution) image data treatment. That the method we present here is relatively rapid and lends itself to full automation suggests its eventual utility for 3-D imaging cytometry.
منابع مشابه
Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging
Multifocal multiphoton microscopy (MMM) is an efficient and technically simple method for generating multiphoton fluorescence images. Featuring the high axial resolution of confocal and multiphoton scanning microscopes, MMM also achieves high speed in 3-D microscopy. In this paper, examples of fast-mode 3-D microscopy are given including imaging of fixed brain tissue as well as living PC12 cell...
متن کاملNoninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملGaussian beam deconvolution in optical coherence tomography
Optical coherence tomography (OCT) is an emerging, high-resolution near-infrared imaging and microscopy technique. The axial and transverse resolutions in OCT can each be analyzed independently, with the axial resolution inversely proportional to the spectral bandwidth of the optical source and the transverse resolution defined by standard Gaussian beam optics. While high numerical-aperture obj...
متن کاملQuantum dots for molecular imaging and cancer medicine.
Extract: The past few decades have witnessed technical advances that have introduced cell biologists and physicians to a new, dynamic, subcellular world where genes and gene products can be visualized to interact in space and time and in health and disease. The accelerating field of molecular imaging has been critically dependent on indicator probes which show when and where genetically or bioc...
متن کاملWhite-light diffraction tomography of unlabelled live cells
We present a technique called white-light diffraction tomography (WDT) for imaging microscopic transparent objects such as live unlabelled cells. The approach extends diffraction tomography to white-light illumination and imaging rather than scattering plane measurements. Our experiments were performed using a conventional phase contrast microscope upgraded with a module to measure quantitative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology journal
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2008