A Hybrid Multi-Step Rolling Forecasting Model Based on SSA and Simulated Annealing—Adaptive Particle Swarm Optimization for Wind Speed
نویسندگان
چکیده
Abstract: With the limitations of conventional energy becoming increasing distinct, wind energy is emerging as a promising renewable energy source that plays a critical role in the modern electric and economic fields. However, how to select optimization algorithms to forecast wind speed series and improve prediction performance is still a highly challenging problem. Traditional single algorithms are widely utilized to select and optimize parameters of neural network algorithms, but these algorithms usually ignore the significance of parameter optimization, precise searching, and the application of accurate data, which results in poor forecasting performance. With the aim of overcoming the weaknesses of individual algorithms, a novel hybrid algorithm was created, which can not only easily obtain the real and effective wind speed series by using singular spectrum analysis, but also possesses stronger adaptive search and optimization capabilities than the other algorithms: it is faster, has fewer parameters, and is less expensive. For the purpose of estimating the forecasting ability of the proposed combined model, 10-min wind speed series from three wind farms in Shandong Province, eastern China, are employed as a case study. The experimental results were considerably more accurately predicted by the presented algorithm than the comparison algorithms.
منابع مشابه
A Low-Carbon Dispatch Model in a Wind Power Integrated System Considering Wind Speed Forecasting and Energy-Environmental Efficiency
This paper introduces the “Energy-Environmental Efficiency” concept of building a low-carbon dispatch model of wind-incorporated power systems from the perspective of environmental protection and low-carbon dispatch promotion based on the existing economic environmental dispatch. A rolling auto-regressive and moving-average model is adopted to forecast wind speeds for the next 24 h and reduce t...
متن کاملAN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملShort-term wind speed forecasting in Rostamabad in Iran by a hybrid PSO–ANFIS approach
Wind energy has been well recognized as renewable resource in electricity generation. In this paper, a novel hybrid approach is proposed for wind speed forecasting in a Rostamabad in Iran, from 2002 to 2004. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system (PSO-ANFIS). The 10-minute average wind speed data from Ro...
متن کاملHybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation
Wind speed forecasting is difficult not only because of the influence of atmospheric dynamics but also for the impossibility of providing an accurate prediction with traditional statistical forecasting models that work by discovering an inner relationship within historical records. This paper develops a self-adaptive (SA) auto-regressive integrated moving average with exogenous variables (ARIMA...
متن کامل